Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree of life study unveils inner workings of a cell

08.09.2015

Scientists create world's largest protein map to reveal which proteins work together in a cell

A multinational team of scientists have sifted through cells of vastly different organisms, from amoebae to worms to mice to humans, to reveal how proteins fit together to build different cells and bodies.


Scientists have uncovered tens of thousands of new protein interactions, accounting for about a quarter of all estimated protein contacts in a cell.

Credit: Jovana Drinkjakovic

This tour de force of protein science, a result of a collaboration between seven research groups from three countries, led by Professor Andrew Emili from the University of Toronto's Donnelly Centre and Professor Edward Marcotte from the University of Texas at Austin, uncovered tens of thousands of new protein interactions, accounting for about a quarter of all estimated protein contacts in a cell.

When even a single one of these interactions is lost it can lead to disease, and the map is already helping scientists spot individual proteins that could be at the root of complex human disorders. The data will be available to researchers across the world through open access databases.

The study comes out in Nature on September 7.

While the sequencing of the human genome more than a decade ago was undoubtedly one of the greatest discoveries in biology, it was only the beginning of our in-depth understanding of how cells work. Genes are just blueprints and it is the genes' products, the proteins, that do much of the work in a cell.

Proteins work in teams by sticking to each other to carry out their jobs. Many proteins come together to form so called molecular machines that play key roles, such a building new proteins or recycling those no longer needed by literally grinding them into reusable parts. But for the vast majority of proteins, and there are tens of thousands of them in human cells, we still don't know what they do.

This is where Emili and Marcotte's map comes in. Using a state-of-the-art method developed by the groups, the researchers were able to fish thousands of protein machineries out of cells and count individual proteins they are made of. They then built a network that, similar to social networks, offers clues into protein function based on which other proteins they hang out with. For example, a new and unstudied protein, whose role we don't yet know, is likely to be involved in fixing damage in a cell if it sticks to cell's known "handymen" proteins.

Today's landmark study gathered information on protein machineries from nine species that represent the tree of life: baker's yeast, amoeba, sea anemones, flies, worms, sea urchins, frogs, mice and humans. The new map expands the number of known protein associations over 10 fold, and gives insights into how they evolved over time.

"For me the highlight of the study is its sheer scale. We have tripled the number of protein interactions for every species. So across all the animals, we can now predict, with high confidence, more than 1 million protein interactions - a fundamentally 'big step' moving the goal posts forward in terms of protein interactions networks," says Emili, who is also Ontario Research Chair in Biomarkers in Disease Management and a professor in the Department of Molecular Genetics.

The researchers discovered that tens of thousands of protein associations remained unchanged since the first ancestral cell appeared, one billion years ago (!), preceding all of animal life on Earth.

"Protein assemblies in humans were often identical to those in other species. This not only reinforces what we already know about our common evolutionary ancestry, it also has practical implications, providing the ability to study the genetic basis for a wide variety of diseases and how they present in different species," says Marcotte.

The map is already proving useful in pinpointing possible causes of human disease. One example is a newly discovered molecular machine, dubbed Commander, which consists of about a dozen individual proteins. Genes that encode some of Commander's components had previously been found to be mutated in people with intellectual disabilities but it was not clear how these proteins worked.

Because Commander is present in all animal cells, graduate student Fan Tu went on to disrupt its components in tadpoles, revealing abnormalities in the way brain cells are positioned during embryo development and providing a possible origin for a complex human condition.

"With tens of thousands of other new protein interactions, our map promises to open many more lines of research into links between proteins and disease, which we are keen to explore in depth over the coming years," concludes Dr. Emili.

Media Contact

Jovana Drinjakovic
jovana.drinjakovic@gmail.com
416-946-8253

 @UofTNews

http://www.utoronto.ca 

Jovana Drinjakovic | EurekAlert!

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>