Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Toxic Alzheimer's protein spreads through brain via extracellular space


Neural activity accelerates its spread through the brain

A toxic Alzheimer's protein can spread through the brain--jumping from one neuron to another--via the extracellular space that surrounds the brain's neurons, suggests new research from Columbia University Medical Center.

Orange indicates where tau protein has traveled from one neuron to another.

Credit: Laboratory of Karen E. Duff, PhD, Columbia University Medical Center

The study has been published online in Nature Neuroscience.

The spread of the protein, called tau, may explain why only one area of the brain is affected in the early stages of Alzheimer's but multiple areas are affected in later stages of the disease.

"By learning how tau spreads, we may be able to stop it from jumping from neuron to neuron," said Karen Duff, PhD, professor in the department of pathology and cell biology (in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain) and professor of psychiatry (at New York State Psychiatric Institute.) "This would prevent the disease from spreading to other regions of the brain, which is associated with more severe dementia."

The idea the Alzheimer's can spread through the brain first gained support a few years ago when Duff and other Columbia researchers discovered that tau spread from neuron to neuron through the brains of mice.

In the new study, lead scientist Jessica Wu, PhD, a former post-doctoral researcher at the Taub Institute who is currently at Massachusetts Institute of Technology, discovered how tau travels by tracking the movement of tau from one neuron to another. Tau, she found, can be released by neurons into extracellular space, where it can be picked up by other neurons. Because tau can travel long distances within the neuron before its release, it can seed other regions of the brain.

"This finding has important clinical implications," explained Dr. Duff. "When tau is released into the extracellular space, it would be much easer to target the protein with therapeutic agents, such as antibodies, than if it had remained in the neuron."

A second interesting feature of the study is the observation that the spread of tau accelerates when the neurons are more active. Two team members, Abid Hussaini, PhD, and Gustavo Rodriguez, PhD, showed that stimulating the activity of neurons accelerated the spread of tau through the brain of mice and led to more neurodegeneration.

Although more work is needed to examine whether those findings are relevant for people, "they suggest that clinical trials testing treatments that increase brain activity, such as deep brain stimulation, should be monitored carefully in people with neurodegenerative diseases," said Dr. Duff.

The study is titled, "Neuronal activity enhances tau propagation and tau pathology in vivo."


Authors included Jessica W. Wu, S. Abid Hussaini, Isle Bastille, Gustavo A. Rodriguez, Kelly Rilett, Hongjun Fu, Rick A. C. M. Boonen, Mathieu Hreman, Eden Nahmani, Sheina Emrani, Y Helen Figueroa, Catherine L. Clelland, and Karen E. Duff (Taub Institute, Columbia University Medical Center, New York, NY), Ana Mrejeru (Department of Neurology, Columbia University Medical Center, New York, NY), David W. Sanders and Marc I. Diamond (Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX), Casey Cook (Department of Neuroscience, Mayo Clinic, Jacksonville, FL), and Selina Wray (Institute of Neurology, University College, London, UK).

This work was supported by a BrightFocus Foundation fellowship, NIH/NINDS grants NS081555 and NS074874, Cure Alzheimer's Fund, the Parkinson's Disease Foundation, NIH/NIA grants AG050425 and AA19801, and the NIHR Queen Square Dementia Biomedical Research Unit.

The authors declare no competing financial interests.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit or

Media Contact

Karin Eskenazi


Karin Eskenazi | EurekAlert!

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>