Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic Alzheimer's protein spreads through brain via extracellular space

19.07.2016

Neural activity accelerates its spread through the brain

A toxic Alzheimer's protein can spread through the brain--jumping from one neuron to another--via the extracellular space that surrounds the brain's neurons, suggests new research from Columbia University Medical Center.


Orange indicates where tau protein has traveled from one neuron to another.

Credit: Laboratory of Karen E. Duff, PhD, Columbia University Medical Center

The study has been published online in Nature Neuroscience.

The spread of the protein, called tau, may explain why only one area of the brain is affected in the early stages of Alzheimer's but multiple areas are affected in later stages of the disease.

"By learning how tau spreads, we may be able to stop it from jumping from neuron to neuron," said Karen Duff, PhD, professor in the department of pathology and cell biology (in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain) and professor of psychiatry (at New York State Psychiatric Institute.) "This would prevent the disease from spreading to other regions of the brain, which is associated with more severe dementia."

The idea the Alzheimer's can spread through the brain first gained support a few years ago when Duff and other Columbia researchers discovered that tau spread from neuron to neuron through the brains of mice.

In the new study, lead scientist Jessica Wu, PhD, a former post-doctoral researcher at the Taub Institute who is currently at Massachusetts Institute of Technology, discovered how tau travels by tracking the movement of tau from one neuron to another. Tau, she found, can be released by neurons into extracellular space, where it can be picked up by other neurons. Because tau can travel long distances within the neuron before its release, it can seed other regions of the brain.

"This finding has important clinical implications," explained Dr. Duff. "When tau is released into the extracellular space, it would be much easer to target the protein with therapeutic agents, such as antibodies, than if it had remained in the neuron."

A second interesting feature of the study is the observation that the spread of tau accelerates when the neurons are more active. Two team members, Abid Hussaini, PhD, and Gustavo Rodriguez, PhD, showed that stimulating the activity of neurons accelerated the spread of tau through the brain of mice and led to more neurodegeneration.

Although more work is needed to examine whether those findings are relevant for people, "they suggest that clinical trials testing treatments that increase brain activity, such as deep brain stimulation, should be monitored carefully in people with neurodegenerative diseases," said Dr. Duff.

The study is titled, "Neuronal activity enhances tau propagation and tau pathology in vivo."

###

Authors included Jessica W. Wu, S. Abid Hussaini, Isle Bastille, Gustavo A. Rodriguez, Kelly Rilett, Hongjun Fu, Rick A. C. M. Boonen, Mathieu Hreman, Eden Nahmani, Sheina Emrani, Y Helen Figueroa, Catherine L. Clelland, and Karen E. Duff (Taub Institute, Columbia University Medical Center, New York, NY), Ana Mrejeru (Department of Neurology, Columbia University Medical Center, New York, NY), David W. Sanders and Marc I. Diamond (Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX), Casey Cook (Department of Neuroscience, Mayo Clinic, Jacksonville, FL), and Selina Wray (Institute of Neurology, University College, London, UK).

This work was supported by a BrightFocus Foundation fellowship, NIH/NINDS grants NS081555 and NS074874, Cure Alzheimer's Fund, the Parkinson's Disease Foundation, NIH/NIA grants AG050425 and AA19801, and the NIHR Queen Square Dementia Biomedical Research Unit.

The authors declare no competing financial interests.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Media Contact

Karin Eskenazi
ket2116@columbia.edu
212-342-0508

 @ColumbiaMed

http://www.cumc.columbia.edu 

Karin Eskenazi | EurekAlert!

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>