Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Toxic Alzheimer's protein spreads through brain via extracellular space


Neural activity accelerates its spread through the brain

A toxic Alzheimer's protein can spread through the brain--jumping from one neuron to another--via the extracellular space that surrounds the brain's neurons, suggests new research from Columbia University Medical Center.

Orange indicates where tau protein has traveled from one neuron to another.

Credit: Laboratory of Karen E. Duff, PhD, Columbia University Medical Center

The study has been published online in Nature Neuroscience.

The spread of the protein, called tau, may explain why only one area of the brain is affected in the early stages of Alzheimer's but multiple areas are affected in later stages of the disease.

"By learning how tau spreads, we may be able to stop it from jumping from neuron to neuron," said Karen Duff, PhD, professor in the department of pathology and cell biology (in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain) and professor of psychiatry (at New York State Psychiatric Institute.) "This would prevent the disease from spreading to other regions of the brain, which is associated with more severe dementia."

The idea the Alzheimer's can spread through the brain first gained support a few years ago when Duff and other Columbia researchers discovered that tau spread from neuron to neuron through the brains of mice.

In the new study, lead scientist Jessica Wu, PhD, a former post-doctoral researcher at the Taub Institute who is currently at Massachusetts Institute of Technology, discovered how tau travels by tracking the movement of tau from one neuron to another. Tau, she found, can be released by neurons into extracellular space, where it can be picked up by other neurons. Because tau can travel long distances within the neuron before its release, it can seed other regions of the brain.

"This finding has important clinical implications," explained Dr. Duff. "When tau is released into the extracellular space, it would be much easer to target the protein with therapeutic agents, such as antibodies, than if it had remained in the neuron."

A second interesting feature of the study is the observation that the spread of tau accelerates when the neurons are more active. Two team members, Abid Hussaini, PhD, and Gustavo Rodriguez, PhD, showed that stimulating the activity of neurons accelerated the spread of tau through the brain of mice and led to more neurodegeneration.

Although more work is needed to examine whether those findings are relevant for people, "they suggest that clinical trials testing treatments that increase brain activity, such as deep brain stimulation, should be monitored carefully in people with neurodegenerative diseases," said Dr. Duff.

The study is titled, "Neuronal activity enhances tau propagation and tau pathology in vivo."


Authors included Jessica W. Wu, S. Abid Hussaini, Isle Bastille, Gustavo A. Rodriguez, Kelly Rilett, Hongjun Fu, Rick A. C. M. Boonen, Mathieu Hreman, Eden Nahmani, Sheina Emrani, Y Helen Figueroa, Catherine L. Clelland, and Karen E. Duff (Taub Institute, Columbia University Medical Center, New York, NY), Ana Mrejeru (Department of Neurology, Columbia University Medical Center, New York, NY), David W. Sanders and Marc I. Diamond (Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX), Casey Cook (Department of Neuroscience, Mayo Clinic, Jacksonville, FL), and Selina Wray (Institute of Neurology, University College, London, UK).

This work was supported by a BrightFocus Foundation fellowship, NIH/NINDS grants NS081555 and NS074874, Cure Alzheimer's Fund, the Parkinson's Disease Foundation, NIH/NIA grants AG050425 and AA19801, and the NIHR Queen Square Dementia Biomedical Research Unit.

The authors declare no competing financial interests.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit or

Media Contact

Karin Eskenazi


Karin Eskenazi | EurekAlert!

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>