Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic Alzheimer's protein spreads through brain via extracellular space

19.07.2016

Neural activity accelerates its spread through the brain

A toxic Alzheimer's protein can spread through the brain--jumping from one neuron to another--via the extracellular space that surrounds the brain's neurons, suggests new research from Columbia University Medical Center.


Orange indicates where tau protein has traveled from one neuron to another.

Credit: Laboratory of Karen E. Duff, PhD, Columbia University Medical Center

The study has been published online in Nature Neuroscience.

The spread of the protein, called tau, may explain why only one area of the brain is affected in the early stages of Alzheimer's but multiple areas are affected in later stages of the disease.

"By learning how tau spreads, we may be able to stop it from jumping from neuron to neuron," said Karen Duff, PhD, professor in the department of pathology and cell biology (in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain) and professor of psychiatry (at New York State Psychiatric Institute.) "This would prevent the disease from spreading to other regions of the brain, which is associated with more severe dementia."

The idea the Alzheimer's can spread through the brain first gained support a few years ago when Duff and other Columbia researchers discovered that tau spread from neuron to neuron through the brains of mice.

In the new study, lead scientist Jessica Wu, PhD, a former post-doctoral researcher at the Taub Institute who is currently at Massachusetts Institute of Technology, discovered how tau travels by tracking the movement of tau from one neuron to another. Tau, she found, can be released by neurons into extracellular space, where it can be picked up by other neurons. Because tau can travel long distances within the neuron before its release, it can seed other regions of the brain.

"This finding has important clinical implications," explained Dr. Duff. "When tau is released into the extracellular space, it would be much easer to target the protein with therapeutic agents, such as antibodies, than if it had remained in the neuron."

A second interesting feature of the study is the observation that the spread of tau accelerates when the neurons are more active. Two team members, Abid Hussaini, PhD, and Gustavo Rodriguez, PhD, showed that stimulating the activity of neurons accelerated the spread of tau through the brain of mice and led to more neurodegeneration.

Although more work is needed to examine whether those findings are relevant for people, "they suggest that clinical trials testing treatments that increase brain activity, such as deep brain stimulation, should be monitored carefully in people with neurodegenerative diseases," said Dr. Duff.

The study is titled, "Neuronal activity enhances tau propagation and tau pathology in vivo."

###

Authors included Jessica W. Wu, S. Abid Hussaini, Isle Bastille, Gustavo A. Rodriguez, Kelly Rilett, Hongjun Fu, Rick A. C. M. Boonen, Mathieu Hreman, Eden Nahmani, Sheina Emrani, Y Helen Figueroa, Catherine L. Clelland, and Karen E. Duff (Taub Institute, Columbia University Medical Center, New York, NY), Ana Mrejeru (Department of Neurology, Columbia University Medical Center, New York, NY), David W. Sanders and Marc I. Diamond (Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX), Casey Cook (Department of Neuroscience, Mayo Clinic, Jacksonville, FL), and Selina Wray (Institute of Neurology, University College, London, UK).

This work was supported by a BrightFocus Foundation fellowship, NIH/NINDS grants NS081555 and NS074874, Cure Alzheimer's Fund, the Parkinson's Disease Foundation, NIH/NIA grants AG050425 and AA19801, and the NIHR Queen Square Dementia Biomedical Research Unit.

The authors declare no competing financial interests.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Media Contact

Karin Eskenazi
ket2116@columbia.edu
212-342-0508

 @ColumbiaMed

http://www.cumc.columbia.edu 

Karin Eskenazi | EurekAlert!

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>