Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Topologische Quantenchemie

21.07.2017

Wissenschaftler haben einen neuen Weg gefunden um topologische Materialien zu identifizieren - wichtig für zukünftige vielfältige Anwendungen.

Ein internationales Team von Wissenschaftlern hat eine neue Methode entwickelt, um aus allen existierenden und noch zu synthetisierenden Materialien die topologisch interessanten Materialien zu identifizieren. Das Ergebnis, veröffentlicht am 20. Juli in „Nature“, zeigt, dass topologische Materialien viel häufiger in der Natur auftreten als bisher gedacht.


Titelseite Nature vom 20. Juli 2017

Nature / Illustration by JVG

Topologische Materialien lassen viele interessante technologische Anwendungen aufgrund ihrer exotischen Eigenschaften erwarten. Die Materialien stehen schon seit zehn Jahren im Mittelpunkt des Interesses von theoretischen und experimentellen Physikern und Materialwissenschaftlern, und der Physik-Nobelpreis 2016 für Topologie bildete den vorläufigen Höhepunkt.

Zu den ungewöhnlichen Eigenschaften gehören Elektronen in der Oberfläche, die ohne Widerstand fließen und Eigenschaften, die überraschend anders als normale Materialien auf elektrische und magnetische Eigenschaften reagieren, wünschenswerte Eigenschaften für zukünftige Elektronik.

Bis heute wurden neue topologische Materialien meist nach dem „Versuch und Irrtum“ - Prinzip identifiziert. Der neue Ansatz erlaubt die gleichzeitige Identifizierung ganzer Serien topologischer Materialien. Die Arbeit präsentiert nicht nur einen fundamentalen Fortschritt in der Physik, sondern ändert auch Art des Verständnisses der topologischen Materialien.

Das Autorenteam besteht aus Wissenschaftlern der Princeton Universität, USA (Barry Bradlyn, Jennifer Cano, Zhijun Wang und B. Andrei Bernevig, verantwortlicher Autor), der Universität Bilbao (Luis Elcoro und Mois Aroyo), dem Donostia International Physics Center (Maia Garcia Vergniory), Spanien, und dem Max Planck Institut für Chemische Physik fester Stoffe, Dresden (Claudia Felser).

"Unser Ansatz macht es viel einfacher, neue topologische Materialien ohne detaillierte Berechnungen zu finden.“ sagt Felser, und Bradley ergänzt: „In machen Kristallstrukturen ist es sogar egal, ob das Material ein Halbleiter oder Metall ist, es ist auf jeden Fall topologisch interessant.“

Bis heute sind etwa 200.000 Materialien in den Datenbanken katalogisiert und nur etwa Hundert wurden schon als topologisch relevante Materialien identifiziert. Das wirft die Frage auf: „Sind topologische Materialien wirklich so selten oder fehlt uns bis heute einfach das vollständige Verständnis?" fragt Cano.

Elektronen in einen Festkörper befinden sich in bestimmten Energieniveaus, bekannt als Bänder, basierend auf einer fast ein Jahrhundert alten Theorie von Felix Bloch. Sind alle Bänder gefüllt, können sich die Elektronen nicht bewegen, das Material ist ein Isolator. Sind die Bänder nur teilweise gefüllt, leitet das Material den Strom, da sich die Elektronen von Atom zu Atom bewegen können.

Allerdings hat jeder Kristall eine bestimmte Symmetrie, die sich in der Form des Kristalls widerspiegelt (z.B. sind Diamantkristalle kubisch oder oktaedrisch) und auch in der Symmetrie der Quantenzustände, in denen sich die Elektronen befinden.

Diese Symmetrie des Kristalls spiegelt sich in vielen Quanteneigenschaften des Materials wider, so bestimmt die Kristallsymmetrie auch die Symmetrie der Bänder, wie diese verbunden werden etc. Für alle möglichen potentiellen Kristallstrukturen, das heißt für alle bekannten und in der Zukunft zu synthetisierenden Materialien lassen sich diese Bandstrukturen mit Gruppen- und graphentheoretischen Konzepten unter Beachtung der elektronischen Orbitale und der Positionen der Atome im Kristall herstellen. Schließlich lassen sich die nicht topologischen Bandstrukturen aussortieren.

Als Ergebnis dieser systematischen Untersuchungen wurden zahlreiche Materialfamilien identifiziert, die topologische Materialien beinhalten. In diesen Materialien können sich Elektronen auf den Oberflächen oder den Kanten der Kristalle ohne Widerstand bewegen. Diese neue Forschungsrichtung bringt in fundamentaler Weise verschiedene Forschungsfelder wie Chemie, Mathematik, Materialwissenschaften und Physik zusammen.

Stuart Parkin, Max-Planck-Institut für Mikrostrukturphysik in Halle und Milleniumspreisträger sagt, „Die Geschwindigkeit, mit der heute neue Materialien entdeckt werden und insbesondere topologische Materialien, ist essentiell für energieeffiziente Elektronik der Zukunft wie Spinelektronik und für Quantencomputer.“ Claudia Felser ergänzt: „Ich bin überzeugt, dass die topologischen Eigenschaften auch für die Chemie interessant sind, so sind topologische Materialien gute Thermoelektrika und auch in der Katalyse eventuell relevant."

Außerdem werden die neuen Erkenntnisse über den kristallographischen Bilbao Server allen Wissenschaftlern zugänglich gemacht (http://www.cryst.ehu.es/). "Mit Hilfe der Webseite und den publizierten Erkenntnissen kann jeder Wissenschaftler nun schnell herausfinden, ob das neue Material topologische Eigenschaften aufweist," sagt Elcoro.

“Unsere Forschungsergebnisse zeigen beeindruckend, dass Symmetrie, Topologie, Chemie und Physik eine fundamentale Rolle für das Verständnis von Materialien spielen,“ sagt Bernevig, der verantwortliche Autor. „Die neue Theorie verbindet zwei neue Ingredienzen, die Bandtopologie mit der Orbitalhybridisierung eingebettet in die fast 100 Jahre alte Bloch-Theorie und öffnet einen neuen Pfad zur Entdeckung neuer Metalle und Isolatoren mit topologischen Eigenschaften “

Die Studie, "Topological quantum chemistry," von Barry Bradlyn, Luis Elcoro, Jennifer Cano, Maia Garcia Vergniory, Zhijun Wang, Claudia Felser, Mois Aroyo and B. Andrei Bernevig, wurde in „Nature“ am 20. Juli 2017 publiziert. Doi:10.1038/nature23268

Author contact:
Claudia Felser, MPI CPfS
B. Andrei Bernevig, Princeton University

Weitere Informationen:

http://www.cpfs.mpg.de/solid_state_chemistry
https://www.princeton.edu/physics/people/display_person.xml?netid=bernevig

Dipl.-Übers. Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>