Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Topologische Quantenchemie

21.07.2017

Wissenschaftler haben einen neuen Weg gefunden um topologische Materialien zu identifizieren - wichtig für zukünftige vielfältige Anwendungen.

Ein internationales Team von Wissenschaftlern hat eine neue Methode entwickelt, um aus allen existierenden und noch zu synthetisierenden Materialien die topologisch interessanten Materialien zu identifizieren. Das Ergebnis, veröffentlicht am 20. Juli in „Nature“, zeigt, dass topologische Materialien viel häufiger in der Natur auftreten als bisher gedacht.


Titelseite Nature vom 20. Juli 2017

Nature / Illustration by JVG

Topologische Materialien lassen viele interessante technologische Anwendungen aufgrund ihrer exotischen Eigenschaften erwarten. Die Materialien stehen schon seit zehn Jahren im Mittelpunkt des Interesses von theoretischen und experimentellen Physikern und Materialwissenschaftlern, und der Physik-Nobelpreis 2016 für Topologie bildete den vorläufigen Höhepunkt.

Zu den ungewöhnlichen Eigenschaften gehören Elektronen in der Oberfläche, die ohne Widerstand fließen und Eigenschaften, die überraschend anders als normale Materialien auf elektrische und magnetische Eigenschaften reagieren, wünschenswerte Eigenschaften für zukünftige Elektronik.

Bis heute wurden neue topologische Materialien meist nach dem „Versuch und Irrtum“ - Prinzip identifiziert. Der neue Ansatz erlaubt die gleichzeitige Identifizierung ganzer Serien topologischer Materialien. Die Arbeit präsentiert nicht nur einen fundamentalen Fortschritt in der Physik, sondern ändert auch Art des Verständnisses der topologischen Materialien.

Das Autorenteam besteht aus Wissenschaftlern der Princeton Universität, USA (Barry Bradlyn, Jennifer Cano, Zhijun Wang und B. Andrei Bernevig, verantwortlicher Autor), der Universität Bilbao (Luis Elcoro und Mois Aroyo), dem Donostia International Physics Center (Maia Garcia Vergniory), Spanien, und dem Max Planck Institut für Chemische Physik fester Stoffe, Dresden (Claudia Felser).

"Unser Ansatz macht es viel einfacher, neue topologische Materialien ohne detaillierte Berechnungen zu finden.“ sagt Felser, und Bradley ergänzt: „In machen Kristallstrukturen ist es sogar egal, ob das Material ein Halbleiter oder Metall ist, es ist auf jeden Fall topologisch interessant.“

Bis heute sind etwa 200.000 Materialien in den Datenbanken katalogisiert und nur etwa Hundert wurden schon als topologisch relevante Materialien identifiziert. Das wirft die Frage auf: „Sind topologische Materialien wirklich so selten oder fehlt uns bis heute einfach das vollständige Verständnis?" fragt Cano.

Elektronen in einen Festkörper befinden sich in bestimmten Energieniveaus, bekannt als Bänder, basierend auf einer fast ein Jahrhundert alten Theorie von Felix Bloch. Sind alle Bänder gefüllt, können sich die Elektronen nicht bewegen, das Material ist ein Isolator. Sind die Bänder nur teilweise gefüllt, leitet das Material den Strom, da sich die Elektronen von Atom zu Atom bewegen können.

Allerdings hat jeder Kristall eine bestimmte Symmetrie, die sich in der Form des Kristalls widerspiegelt (z.B. sind Diamantkristalle kubisch oder oktaedrisch) und auch in der Symmetrie der Quantenzustände, in denen sich die Elektronen befinden.

Diese Symmetrie des Kristalls spiegelt sich in vielen Quanteneigenschaften des Materials wider, so bestimmt die Kristallsymmetrie auch die Symmetrie der Bänder, wie diese verbunden werden etc. Für alle möglichen potentiellen Kristallstrukturen, das heißt für alle bekannten und in der Zukunft zu synthetisierenden Materialien lassen sich diese Bandstrukturen mit Gruppen- und graphentheoretischen Konzepten unter Beachtung der elektronischen Orbitale und der Positionen der Atome im Kristall herstellen. Schließlich lassen sich die nicht topologischen Bandstrukturen aussortieren.

Als Ergebnis dieser systematischen Untersuchungen wurden zahlreiche Materialfamilien identifiziert, die topologische Materialien beinhalten. In diesen Materialien können sich Elektronen auf den Oberflächen oder den Kanten der Kristalle ohne Widerstand bewegen. Diese neue Forschungsrichtung bringt in fundamentaler Weise verschiedene Forschungsfelder wie Chemie, Mathematik, Materialwissenschaften und Physik zusammen.

Stuart Parkin, Max-Planck-Institut für Mikrostrukturphysik in Halle und Milleniumspreisträger sagt, „Die Geschwindigkeit, mit der heute neue Materialien entdeckt werden und insbesondere topologische Materialien, ist essentiell für energieeffiziente Elektronik der Zukunft wie Spinelektronik und für Quantencomputer.“ Claudia Felser ergänzt: „Ich bin überzeugt, dass die topologischen Eigenschaften auch für die Chemie interessant sind, so sind topologische Materialien gute Thermoelektrika und auch in der Katalyse eventuell relevant."

Außerdem werden die neuen Erkenntnisse über den kristallographischen Bilbao Server allen Wissenschaftlern zugänglich gemacht (http://www.cryst.ehu.es/). "Mit Hilfe der Webseite und den publizierten Erkenntnissen kann jeder Wissenschaftler nun schnell herausfinden, ob das neue Material topologische Eigenschaften aufweist," sagt Elcoro.

“Unsere Forschungsergebnisse zeigen beeindruckend, dass Symmetrie, Topologie, Chemie und Physik eine fundamentale Rolle für das Verständnis von Materialien spielen,“ sagt Bernevig, der verantwortliche Autor. „Die neue Theorie verbindet zwei neue Ingredienzen, die Bandtopologie mit der Orbitalhybridisierung eingebettet in die fast 100 Jahre alte Bloch-Theorie und öffnet einen neuen Pfad zur Entdeckung neuer Metalle und Isolatoren mit topologischen Eigenschaften “

Die Studie, "Topological quantum chemistry," von Barry Bradlyn, Luis Elcoro, Jennifer Cano, Maia Garcia Vergniory, Zhijun Wang, Claudia Felser, Mois Aroyo and B. Andrei Bernevig, wurde in „Nature“ am 20. Juli 2017 publiziert. Doi:10.1038/nature23268

Author contact:
Claudia Felser, MPI CPfS
B. Andrei Bernevig, Princeton University

Weitere Informationen:

http://www.cpfs.mpg.de/solid_state_chemistry
https://www.princeton.edu/physics/people/display_person.xml?netid=bernevig

Dipl.-Übers. Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>