Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too much Salt in Food can push the Immune System out of Equilibrium

21.10.2015

Too much salt in food can influence the immune system. In a study published recently in the Journal of Clinical Investigation*, Dr. Katrina Binger, Matthias Gebhardt, and Professor Dominik Müller from the Experimental Clinical Research Center (ECRC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité – Universitätsmedizin Berlin establish that increased salt consumption by rodents leads to delayed healing of their wounds because too much salt pushes the immune system out of equilibrium. At the same time, they were successful in explaining the mechanism causing this imbalance.

Too much salt in food is unhealthy. Physicians and scientists studying nutrition agree on this and warn of consuming too much salt. It is well known that table salt (sodium chloride) can drive blood pressure upwards. It may also be partly responsible for cardiovascular disease, chronic diseases, autoimmune diseases, as well as cancer.

“However, we still don’t understand the underlying mechanisms causing this response,” says Professor Müller. “And we don’t know how much salt is too much, that is, how much salt we can eat without compromising our health.”

Genetics play a large part in the diseases mentioned, yet the sharp rise in inflammatory diseases as well as autoimmune diseases – in which the immune system mistakenly destroys endogenous structures – suggests that environmental factors also contribute to these diseases in an important way. “Western” eating habits characterized by high fat and salt levels have recently come under particular suspicion.

It has become clear the last few years that excessive salt in food also has effects on the immune system, and in diverse ways. In their study recently published in the Journal of Clinical Investigation, Dr. Binger, Matthias Gebhardt, and Professor Müller furnish proof that too much salt in food weakens a specific group of scavenger cells (macrophages) in the immune system.

Macrophages are the first responders to infection and are important in warding off a variety of pathogens. One of whose jobs is to combat inflammation in the body. A particular type of these cells, known as type 2 macrophages, also play a critical role in repairing wounds and combating too much inflammation. In rodents fed a high-salt diet, wound healing was delayed – in part of course because of the salt-related weakening of these particular scavenger cells, as the scientists surmised.

A research team headed by Professor Jens Titze, Vanderbilt University (Nashville, Tennessee USA), together with the Berlin researchers recently discovered a new salt reservoir in the body Excess salt is deposited in the interstitium of tissues like skin rather than in the blood, for example, since the kidneys continuously regulate the salt content there. These new insights enabled the three MDC scientists to also explain the mechanism of how table salt weakens the activity of the macrophages.

A group of researchers including Professor Müller had first discovered a different effect of salt on the immune system in 2013. In a study published in Nature, they had proven that elevated salt consumption promotes the development of autoimmune diseases. The reason: too much salt leads to a sharp rise of a group of aggressive immune cells (Th17 helper cells). These T helper cells that produce the messenger compound interleukin 17 (hence their name) are partly to blame for the immune system running wild, attacking and damaging its own organism.

Professor Titze, Professor Müller, and Matthias Gebhardt jointly with other researchers produced the first evidence early this year that high salt consumption in both rodents and patients puts the immune system in high gear and finishes off bacterial infections in the skin (Cell Metabolism). The reason: salt gets deposited in the skin and, in the event of a bacterial skin infection, activates type 1 macrophages that release increased bactericides. In this situation however, Professor Müller warns against eating too much salt: “The risks outweigh the benefits.” Moreover: “These seemingly contradictory findings indicate macrophages can adapt in different ways to an environment that itself changes with elevated salt volumes in the body.

*High salt reduces the activation of IL-4+IL-13 stimulated 1 macrophages
Katrina J. Binger1,2,12, 13, Matthias Gebhardt1,2,12, Matthias Heinig2, Carola Rintisch2, Agnes Schroeder3, Wolfgang Neuhofer4, Karl Hilgers3, Arndt Manzel3, Christian Schwartz3, Markus Kleinewietfeld5,6, Jakob Voelkl7, Valentin Schatz8, Ralf A. Linker3, Florian Lang7, David Voehringer3, Mark D. Wright9, Norbert Hübner2, Ralf Dechend1,10, Jonathan Jantsch8, Jens Titze3,11, Dominik N. Müller1,2,13
1Experimental and Clinical Research Center, an institutional cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
2Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany; German Centre for Cardiovascular Research Partner Site Berlin, Germany
3University Hospital Erlangen at the Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
4Ludwig-Maximillian-University of Munich, Munich, 80539, Germany
5Translational Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany
6DFG-Center for Regenerative Therapies Dresden (CRTD), Dresden, 01307, Germany
7University of Tübingen, Tübingen, 72076, Germany
8University Hospital Regensburg, Regensburg, 93053, Germany
9Department of Immunology, Monash University, Melbourne, 3004, Australia
10HELIOS-Klinikum Berlin, Berlin, 13125, Germany
11Vanderbilt University, Nashville, TN, 37235, USA
12equal contribution
13correspondance to:
Dominik N. Muller, Tel: +40 (0)30 450-540 286. E-mail: dominik.mueller@mdc.de
Katrina J. Binger Tel: +61 (0)3 8532 1111. E-mail: katrinabinger@gmail.com

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/en

Weitere Informationen:

http://www.jci.org/articles/view/80919?key=1d778b73341d560671fd
http://dx.doi.org/10.1038/nature11868
http://dx.doi.org/10.1016/j.cmet.2015.02.003
https://www.mdc-berlin.de/40398578/en/news/archive/2013/20130305-joint_press_rel...

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>