Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too much Salt in Food can push the Immune System out of Equilibrium

21.10.2015

Too much salt in food can influence the immune system. In a study published recently in the Journal of Clinical Investigation*, Dr. Katrina Binger, Matthias Gebhardt, and Professor Dominik Müller from the Experimental Clinical Research Center (ECRC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité – Universitätsmedizin Berlin establish that increased salt consumption by rodents leads to delayed healing of their wounds because too much salt pushes the immune system out of equilibrium. At the same time, they were successful in explaining the mechanism causing this imbalance.

Too much salt in food is unhealthy. Physicians and scientists studying nutrition agree on this and warn of consuming too much salt. It is well known that table salt (sodium chloride) can drive blood pressure upwards. It may also be partly responsible for cardiovascular disease, chronic diseases, autoimmune diseases, as well as cancer.

“However, we still don’t understand the underlying mechanisms causing this response,” says Professor Müller. “And we don’t know how much salt is too much, that is, how much salt we can eat without compromising our health.”

Genetics play a large part in the diseases mentioned, yet the sharp rise in inflammatory diseases as well as autoimmune diseases – in which the immune system mistakenly destroys endogenous structures – suggests that environmental factors also contribute to these diseases in an important way. “Western” eating habits characterized by high fat and salt levels have recently come under particular suspicion.

It has become clear the last few years that excessive salt in food also has effects on the immune system, and in diverse ways. In their study recently published in the Journal of Clinical Investigation, Dr. Binger, Matthias Gebhardt, and Professor Müller furnish proof that too much salt in food weakens a specific group of scavenger cells (macrophages) in the immune system.

Macrophages are the first responders to infection and are important in warding off a variety of pathogens. One of whose jobs is to combat inflammation in the body. A particular type of these cells, known as type 2 macrophages, also play a critical role in repairing wounds and combating too much inflammation. In rodents fed a high-salt diet, wound healing was delayed – in part of course because of the salt-related weakening of these particular scavenger cells, as the scientists surmised.

A research team headed by Professor Jens Titze, Vanderbilt University (Nashville, Tennessee USA), together with the Berlin researchers recently discovered a new salt reservoir in the body Excess salt is deposited in the interstitium of tissues like skin rather than in the blood, for example, since the kidneys continuously regulate the salt content there. These new insights enabled the three MDC scientists to also explain the mechanism of how table salt weakens the activity of the macrophages.

A group of researchers including Professor Müller had first discovered a different effect of salt on the immune system in 2013. In a study published in Nature, they had proven that elevated salt consumption promotes the development of autoimmune diseases. The reason: too much salt leads to a sharp rise of a group of aggressive immune cells (Th17 helper cells). These T helper cells that produce the messenger compound interleukin 17 (hence their name) are partly to blame for the immune system running wild, attacking and damaging its own organism.

Professor Titze, Professor Müller, and Matthias Gebhardt jointly with other researchers produced the first evidence early this year that high salt consumption in both rodents and patients puts the immune system in high gear and finishes off bacterial infections in the skin (Cell Metabolism). The reason: salt gets deposited in the skin and, in the event of a bacterial skin infection, activates type 1 macrophages that release increased bactericides. In this situation however, Professor Müller warns against eating too much salt: “The risks outweigh the benefits.” Moreover: “These seemingly contradictory findings indicate macrophages can adapt in different ways to an environment that itself changes with elevated salt volumes in the body.

*High salt reduces the activation of IL-4+IL-13 stimulated 1 macrophages
Katrina J. Binger1,2,12, 13, Matthias Gebhardt1,2,12, Matthias Heinig2, Carola Rintisch2, Agnes Schroeder3, Wolfgang Neuhofer4, Karl Hilgers3, Arndt Manzel3, Christian Schwartz3, Markus Kleinewietfeld5,6, Jakob Voelkl7, Valentin Schatz8, Ralf A. Linker3, Florian Lang7, David Voehringer3, Mark D. Wright9, Norbert Hübner2, Ralf Dechend1,10, Jonathan Jantsch8, Jens Titze3,11, Dominik N. Müller1,2,13
1Experimental and Clinical Research Center, an institutional cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
2Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany; German Centre for Cardiovascular Research Partner Site Berlin, Germany
3University Hospital Erlangen at the Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
4Ludwig-Maximillian-University of Munich, Munich, 80539, Germany
5Translational Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany
6DFG-Center for Regenerative Therapies Dresden (CRTD), Dresden, 01307, Germany
7University of Tübingen, Tübingen, 72076, Germany
8University Hospital Regensburg, Regensburg, 93053, Germany
9Department of Immunology, Monash University, Melbourne, 3004, Australia
10HELIOS-Klinikum Berlin, Berlin, 13125, Germany
11Vanderbilt University, Nashville, TN, 37235, USA
12equal contribution
13correspondance to:
Dominik N. Muller, Tel: +40 (0)30 450-540 286. E-mail: dominik.mueller@mdc.de
Katrina J. Binger Tel: +61 (0)3 8532 1111. E-mail: katrinabinger@gmail.com

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/en

Weitere Informationen:

http://www.jci.org/articles/view/80919?key=1d778b73341d560671fd
http://dx.doi.org/10.1038/nature11868
http://dx.doi.org/10.1016/j.cmet.2015.02.003
https://www.mdc-berlin.de/40398578/en/news/archive/2013/20130305-joint_press_rel...

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>