Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To scratch an itch is a hairy problem

03.11.2015

An insect lands on your arm, moving the tiny hairs on your skin just enough to make you want to scratch. Salk Institute researchers have uncovered evidence of a dedicated neural pathway that transmits the itchy feeling triggered by such a light touch.

Surprisingly, the spinal neurons involved in the tingling sensation caused by a light touch are different from those transmitting pain or a 'chemical' itch, the latter elicited by a mosquito bite or a skin wound that is healing.


This is a cross-section of a mouse dorsal spinal cord shows the close relationship between inhibitory interneurons expressing NPY (red), with touch sensory neurons arising from the hairy skin (green).

Credit: Salk Institute/Steeve Bourane

Published October 29, 2015 in the journal Science, the new results lend insights into potential mechanisms of chronic itch, which is caused by a variety of conditions such as eczema, diabetic neuropathy, multiple sclerosis and certain types of cancers. It may also help explain why some people affected by itch are unresponsive to commonly used antihistamine drugs.

"This is the first study that reveals the presence of a dedicated neural pathway for this particular sensation in the spinal cord," says co-senior author and Salk Professor Martyn Goulding. Overactivation of this pathway, which most likely evolved to detect the presence of disease-bearing insects on the skin, results in increased scratching akin to that seen in patients who develop chronic itch.

The spinal cord contains a variety of neurons called interneurons or "middlemen" that process and relay sensory information from the body including the skin. The team found that some of these "middlemen" express a small protein called neuropeptide Y, or NPY for short. This neurotransmitter is present throughout the brain and has several functions, but until now, no one knew what NPY neurons did in the spinal cord.

In the new study, Goulding's team, working with researchers at the Dana-Farber Cancer Institute, selectively eliminated the NPY neurons in the spinal cord of adult mice. Within a week, of removing those inhibitory interneurons from the spinal cord, the mice showed excessive scratching in response to light touch without any effect on their response to chemically-induced itch or pain.

"This was one of the most surprising things we found," says co-lead author Steeve Bourane, a Salk research scientist in Goulding's lab. The group saw similar behaviors when they used a chemical genetic strategy to silence the NPY expressing interneurons that prevents them from communicating with the presumptive neurons that transmit this form of itch.

The fact that the NPY-deficient mice were no more sensitive than controls to more forceful forms of touch and painful stimuli, or even to chemicals that evoke itchiness, suggests light touch uses its own pathway in the nervous system to evoke scratching.

Interestingly, by recording the electrical activity in the spinal cords of mice depleted of NPY interneurons, the researchers discovered that the NPY neurons seem to selectively inhibit or gate light touch signals coming from hairy skin, but not the non-hairy (glabrous) skin, such as the skin found on your palm. "That means there's probably two different spinal touch sensory circuits, one for the glabrous skin and one for the hairy skin," Bourane says.

A Cell study published by Goulding's group earlier this year identified another player in the light-touch circuit: RORα neurons. The scientists are pursuing additional studies to map the entire chain of neurons that activate scratching in response to light touch--something that has been overlooked in the field of chronic itch until now, the team says.

"In the future, maybe we can specifically manipulate or modify the activity of these neurons to help people with chronic itch," Bourane adds.

###

Other authors on the study include co-lead author Bo Duan and co-corresponding author Qiufu Ma of the Dana-Farber Cancer Institute and Harvard Medical School; Stephanie Koch, Antoine Dalet, Olivier Britz and Lidia Garcia-Campmany of the Salk Institute; Euiseok Kim and Anirvan Ghosh of the University of California, San Diego; and Longzhen Cheng of the Dana-Farber Cancer Institute and Fudan University.

The research was supported by grants from the National Institutes of Health and the Caterina Foundation and the Gatsby Charitable Foundation.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probes fundamental life science questions in a unique, collaborative and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, MD, the Institute is an independent nonprofit organization and architectural landmark.

Media Contact

Salk Communications
press@salk.edu
858-453-4100

 @salkinstitute

http://www.salk.edu 

Salk Communications | EurekAlert!

Further reports about: Biological Studies CANCER activity cell and plant biology skin spinal cord

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>