Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To scratch an itch is a hairy problem

03.11.2015

An insect lands on your arm, moving the tiny hairs on your skin just enough to make you want to scratch. Salk Institute researchers have uncovered evidence of a dedicated neural pathway that transmits the itchy feeling triggered by such a light touch.

Surprisingly, the spinal neurons involved in the tingling sensation caused by a light touch are different from those transmitting pain or a 'chemical' itch, the latter elicited by a mosquito bite or a skin wound that is healing.


This is a cross-section of a mouse dorsal spinal cord shows the close relationship between inhibitory interneurons expressing NPY (red), with touch sensory neurons arising from the hairy skin (green).

Credit: Salk Institute/Steeve Bourane

Published October 29, 2015 in the journal Science, the new results lend insights into potential mechanisms of chronic itch, which is caused by a variety of conditions such as eczema, diabetic neuropathy, multiple sclerosis and certain types of cancers. It may also help explain why some people affected by itch are unresponsive to commonly used antihistamine drugs.

"This is the first study that reveals the presence of a dedicated neural pathway for this particular sensation in the spinal cord," says co-senior author and Salk Professor Martyn Goulding. Overactivation of this pathway, which most likely evolved to detect the presence of disease-bearing insects on the skin, results in increased scratching akin to that seen in patients who develop chronic itch.

The spinal cord contains a variety of neurons called interneurons or "middlemen" that process and relay sensory information from the body including the skin. The team found that some of these "middlemen" express a small protein called neuropeptide Y, or NPY for short. This neurotransmitter is present throughout the brain and has several functions, but until now, no one knew what NPY neurons did in the spinal cord.

In the new study, Goulding's team, working with researchers at the Dana-Farber Cancer Institute, selectively eliminated the NPY neurons in the spinal cord of adult mice. Within a week, of removing those inhibitory interneurons from the spinal cord, the mice showed excessive scratching in response to light touch without any effect on their response to chemically-induced itch or pain.

"This was one of the most surprising things we found," says co-lead author Steeve Bourane, a Salk research scientist in Goulding's lab. The group saw similar behaviors when they used a chemical genetic strategy to silence the NPY expressing interneurons that prevents them from communicating with the presumptive neurons that transmit this form of itch.

The fact that the NPY-deficient mice were no more sensitive than controls to more forceful forms of touch and painful stimuli, or even to chemicals that evoke itchiness, suggests light touch uses its own pathway in the nervous system to evoke scratching.

Interestingly, by recording the electrical activity in the spinal cords of mice depleted of NPY interneurons, the researchers discovered that the NPY neurons seem to selectively inhibit or gate light touch signals coming from hairy skin, but not the non-hairy (glabrous) skin, such as the skin found on your palm. "That means there's probably two different spinal touch sensory circuits, one for the glabrous skin and one for the hairy skin," Bourane says.

A Cell study published by Goulding's group earlier this year identified another player in the light-touch circuit: RORα neurons. The scientists are pursuing additional studies to map the entire chain of neurons that activate scratching in response to light touch--something that has been overlooked in the field of chronic itch until now, the team says.

"In the future, maybe we can specifically manipulate or modify the activity of these neurons to help people with chronic itch," Bourane adds.

###

Other authors on the study include co-lead author Bo Duan and co-corresponding author Qiufu Ma of the Dana-Farber Cancer Institute and Harvard Medical School; Stephanie Koch, Antoine Dalet, Olivier Britz and Lidia Garcia-Campmany of the Salk Institute; Euiseok Kim and Anirvan Ghosh of the University of California, San Diego; and Longzhen Cheng of the Dana-Farber Cancer Institute and Fudan University.

The research was supported by grants from the National Institutes of Health and the Caterina Foundation and the Gatsby Charitable Foundation.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probes fundamental life science questions in a unique, collaborative and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, MD, the Institute is an independent nonprofit organization and architectural landmark.

Media Contact

Salk Communications
press@salk.edu
858-453-4100

 @salkinstitute

http://www.salk.edu 

Salk Communications | EurekAlert!

Further reports about: Biological Studies CANCER activity cell and plant biology skin spinal cord

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>