Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny 'racetracks' show how bacteria get organized

14.07.2016

As the world prepares to watch the Summer Olympics' track and field events in Rio, it will come as no surprise that the runners in each race travel in the same direction around the track. But new research shows that if those runners were bacteria, the dynamics on the track would be a bit more complex -- and more than a little puzzling.

According to work by an international group of researchers, when bacteria are confined in millimeter-sized, fluid-filled oval "racetracks," they quickly organize themselves into a clear collective motion. But instead of all traveling in one direction, individual bacteria along the outside of the track go one way, while those in the middle go the other.


Bacteria clustered together in tiny racetracks exhibit complex collective dynamics. New research shows that those dynamics emerge due to collisions and fluid flow.

Credit: H. Wioland/E. Lushi/R.E. Goldstein

The aim of the work was to better understand how bacterial colonies spread though tiny water-filled cracks and crevices they inhabit in natural settings like rock, soil or body tissue. And thanks to these experiments and a set of computer models, the researchers believe they've figured out how these complex dynamics emerge in colonies of rather unsophisticated creatures.

The study, by researchers from Brown University and the University of Cambridge, is published in the New Journal of Physics.

Nature is full of collective patterns that emerge from the behavior of individual organisms. Flocks of starlings, for example, can often be seen creating intricate, flowing patterns in the sky. Bacteria are known to exhibit these kinds of seemingly coordinated patterns as well.

"It's not at all obvious how they do this," said Enkeleida Lushi, a researcher at Brown University's School of Engineering and one of the study's co-authors. "Bacteria don't have leaders to follow, they have limited sensory systems, and they're not very smart. They can't really make decisions about where to go, so it is all down to mechanical interactions between themselves and their surroundings."

For the past several years, Lushi and her colleagues have been working to understand how collective patterns in bacterial colonies form. For this latest research, they wanted to design an experiment that would mimic the tiny channels in which bacteria thrive in nature. Their solution was to make tiny racetracks from clear plastic, so they could observe the behavior of Bacillus subtilis bacteria under a microscope.

The experiments showed that the chaotic motion of all those individual swimmers quickly organizes itself into a collective motion, with bacteria in the middle of the track going in the opposite direction from those on the outer edges. (See video of the bacteria in action here: https://www.youtube.com/watch?v=feCQf_5B8jI)

In order to understand what was driving that pattern, Lushi developed a computer model that captured two critical parameters that affect how the bacteria move in a densely packed colony. The first parameter involves the collisions that occur as bacteria try to swim in close quarters. The model showed that, as bacteria bang into each other, the collisions tend to orient individuals in the same direction.

As for the bi-directional motion -- with the middle swimmers moving in opposite direction from the ones at the edges -- that is a function of fluid flow, the research showed.

Bacteria propel by pushing against the tiny fluid corkscrew-like appendages called flagella. That pushing creates a fluid flow moving opposite the direction of the swimming. The bacteria along the edges of the track are closely aligned by the track's outer surface. They swim at an angle against that outer surface, which causes the backflow they create to be aimed toward the middle of the track. The swimmers in the middle have to fight the currents generated on either side of them. Eventually, the flow becomes more than they can handle.

"Even though they're trying to go in the same direction as the ones on the boundaries, they're being carried backward by the fluid," Lushi said.

The results, Lushi says, underscore the importance of fluid flows in explaining collective dynamics. Despite the fact that most bacteria thrive and have evolved in fluid environments, the effects of fluid flows are often overlooked in explaining their behavior.

Eventually, Lushi and her colleagues are hopeful that research like this might deepen our understanding of how bacteria spread in their natural environment. It could also aid in the development of medical devices with surfaces and architectures that can manipulate bacterial movements and spread.

Those applications, however, remain a bit further down the road, Lushi said. "At this point, we're still taking baby steps to learn about the bacterial interactions and behaviors."

###

Lushi's co-authors on the paper were Hugo Wioland and Raymond Goldstein from the University of Cambridge. The work was supported by the European Research Council (grant 247333) and the National Science Foundation (CBET-1544196)

Note to Editors:

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!

Further reports about: Bacillus subtilis bacteria bacteria bacterial colonies flagella

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>