Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thyroid tumour: it takes two to tango

09.08.2016

Autonomous adenomas are the most common benign tumours of the thyroid gland. Mutations in two genes account for around 70 percent of the cases. Scientists from the University of Würzburg have now discovered another key trigger.

Thyroid hormones are involved in controlling many functions of the human body: They influence sugar, lipid and protein metabolism, regulate body temperature, heart rate, circulation and many more functions. In children, they also control the development of the brain and nerves as well as bone growth.


A significant number of autumnous adenomas carry a mutation in a gene that is involved in controlling cell proliferation and differentiation. EZH1 is its scientific name.

Graphic: Davice Calebiro / Kerstin Bathon

No wonder that hyperthyroidism has several detrimental effects in the affected patients. Typical symptoms include persistent restlessness, irritability, insomnia, inexplicable weight loss, excessive sweating and an increased pulse. Untreated hyperthyroidism has severe consequences, including, most importantly, a higher mortality for cardiovascular disease.

Search for the responsible mutations

In many cases, such a hyperfunction is triggered by thyroid tumours, most of which are benign. Among them, the so-called autonomous adenoma accounts for the majority. Its genesis is in general well understood: "We know that special mutations in certain genes are responsible for around 70 percent of all autonomous adenomas," says Dr. Davide Calebiro from the Institute of Pharmacology and Toxicology and the Bio-Imaging Center of the University of Würzburg.

However, it has been unknown until recently whether these mutations alone are sufficient to prompt thyroid cells to proliferate and produce excessive hormones, or whether additional factors have to be present. Also, it was unclear which factors are involved in the genesis of the remaining 30 percent of autonomous adenomas.

Publication in the Journal of Clinical Investigation

In the search for other causes of the disease, an international team of researchers, led by Davide Calebiro, Luca Persani from the University of Milan and Ralf Paschke from the University of Calgary, have now scored a success. Their results have been published in the current issue of Journal of Clinical Investigation (JCI) – Davide Calebiro is the first author of the study. Researchers from the group of Professor Martin Fassnacht from the Würzburg University Hospital also participated in the study. The Interdisciplinary Center for Clinical Research (IZKF) of the University of Würzburg supported the work.

"For our study, we examined 19 autonomous adenomas using whole exome sequencing," Calebiro describes their approach. This technique does not investigate the entire genome of the cells; rather the focus is on the so-called exons of the genes – which are the pieces that are actually translated into proteins. Usually, the exons ("exome") account for 1-2% of the total DNA. "We were able to show that a significant number of these adenomas carry a mutation in a gene that is involved in controlling cell proliferation and differentiation", Calebiro further explained.

Gene mutation causes increased cell proliferation

EZH1 – or Enhancer of Zeste Homolog 1 – is the scientific name of this gene. EZH1 mutations work synergistically with the other known mutations, leading to the formation of autonomous adenomas. Moreover, functional studies show that EZH1 mutations modify signal pathways that cause thyroid cells to proliferate.

"We were able to show that a hot-spot mutation in the EZH1 gene is the second most common genetic defect in autonomous adenomas," Davide Calebiro puts the result of their recently published work in a nutshell. In his opinion, the frequent association of EZH1 mutations with those in previously known genes points to a "two-hit model". Accordingly, the first mutation increases the disposition for the formation of tumours, whereas the second triggers the disease process.

Recurrent EZH1 mutations are a second hit in autonomous thyroid adenomas. Davide Calebiro, Elisa S. Grassi, Markus Eszlinger, Cristina L. Ronchi, Amod Godbole, Kerstin Bathon, Fabiana Guizzardi, Tiziana de Filippis, Knut Krohn, Holger Jaeschke, Thomas Schwarzmayr, Rifat Bircan, Hulya Iliksu Gozu, Seda Sancak, Marek Niedziela, Tim M. Strom, Martin Fassnacht, Luca Persani, Ralf Paschke. Journal of Clinical Investigation, online published 08.08.16. doi:10.1172/JCI84894

Contact

PD Dr. Davide Calebiro, Phone: +49 931 31-80067, E-mail: davide.calebiro@toxi.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>