Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016

A team of German, Brazilian and Spanish botanists and entomologists discovered fly larvae that live on probably one of the most dangerous habitats for insects, namely the highly sticky leaves of carnivorous sundew plants. The study was published in the journal PLOS ONE.

Hoverflies (also called flower flies), are conspicuous flower visitors of the dipteran family Syrphidae which often mimic the colouration of bees and wasps for protection, however they are totally stingless insects.


Left: The hoverfly Toxomerus basalis. Left: larva crawling on the carnivorous leaf of the sundew Drosera graomogolensis in Minas Gerais, Brazil. Right: Adult male fly.

Left: Paulo M. Gonella, University of São Paulo, SPF. Right: Jeff Skevington, Canadian National Collections, CNC.

The larvae (“maggots”) of most species are known to be beneficial organisms that feed on aphids and related insect pests of plants. However, aphids are relatively rare in the tropics of South America, also known as Neotropics, where a huge number of hoverfly species occur.

Predatory larvae of some hoverfly species there hence became vegetarians, their larvae feeding on pollen or leaves, while larvae of other species prey on small adult flies, or larvae of various other insects. However, barely anything is known about the biology and diet of most known hoverflies species.

The more exciting is the discovery which has now been made in central Brazil, and was published by a team of German, Brazilian and Spanish botanists and entomologists in the journal PLOS ONE. The scientists discovered fly larvae that live on probably one of the most dangerous habitats for insects, namely the highly sticky leaves of carnivorous sundew plants.

Covered by numerous tentacles that secrete a glistening, sticky mucilage, the sundews’ leaves constitute deadly traps for most insects - but where other insects get stuck and become a quick snack of this carnivorous plant, these perfectly adapted larvae can move effortlessly. Moreover, they feed on the insect prey that was caught by the sundews.

The observed larvae spend their entire life on the sticky leaves of the plant as a commensal, feeding from the sundews’ meal. They do this without being digested themselves by the plant, before they finally pupate - attached to the non-sticky and therefore harmless leaf underside of the plant. The adult hoverflies that emerged from the pupae were identified as Toxomerus basalis (both by morphological characters, as well as genetically by DNA sequencing).

Remarkably, although this Brazilian hoverfly species has been known to scientists for 180 years (it was described in 1836), its larvae, feeding habits and biology were hitherto unknown and have now been documented for the first time.

Larvae of this larcenous fly have even been found on several different sundew species and in several states of Brazil, including on the recently discovered “Facebook-sundew” Drosera magnifica. "It could well be that this hoverfly is much more widespread than previously known, or that also other species of the genus Toxomerus show this interesting behavior," said Fernando Rivadavia, who discovered the peculiar larvae. This discovery is a sensation in several respects:

"This is the first known case of insect residents on sundews in South America, from where animal inhabitants of carnivorous plants were thus far only known from pitcher plants", says botanist Andreas Fleischmann of the Botanical State Collection of Munich and author of the study. The biology of this unusual symbiosis is now to be further explored.

"Moreover, this so-called kleptoparasitism represents a novel feeding mode for hoverflies, which is ecologically and evolutionarily remarkable," said Ximo Mengual, entomologist and hoverfly specialist from the Museum Alexander Koenig in Bonn.

Original publication:
Fleischmann, A., Rivadavia, F., Gonella, P.M., Pérez-Bañón, C., Mengual, X. & Rojo, S. (2016). Where is my food? Brazilian flower fly steals prey from carnivorous sundews in a newly discovered plant-animal interaction. PLOS ONE, doi:10.1371/journal.pone.0153900

Contact:
Dr. Andreas Fleischmann
SNSB, Botanische Staatssammlung München
Menzinger Straße 67, D-80638 Munich
e-mail: fleischmann@bsm.mwn.de
Tel. (+49) 089/17861-240
http://www.botanischestaatssammlung.de/index.html?/staff/fleischmann.html

Weitere Informationen:

http://www.snsb.de
http://www.botanischestaatssammlung.de

Dr. Eva-Maria Natzer | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>