Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

There is strength in diversity!

17.09.2015

Altered or new environmental conditions, such as those brought about by shifts in human land use and climate change, impose challenges on living organisms. This can drive species to extinction if they fail to adapt or adjust their geographic distribution. Individual differences play a key role here, and it seems that less is not always more.

A new study by researchers from Linnaeus University published in Ecography demonstrates that a higher degree of among individual variation is beneficial to populations and species. These results will allow for more efficient protection and restoration of biodiversity, the authors say.


Among individual variation exemplified by alternative colour morphs of the pygmy grasshopper Tetrix subulata

(photograph by Anders Forsman)

It has been suggested that higher levels of phenotypic and genetic variation among individuals should promote the ecological and evolutionary success of populations and species in the face of environmental change, but this proposition has not previously been systematically evaluated.

Researchers from Linnaeus University in Sweden reviewed previous studies of plants, animals and bacteria to determine whether the predictions from theory are supported overall by results from experimental and phylogeny-based comparative investigations.

Lead author Professor Anders Forsman elaborates: “our review provides strong evidence that more variable populations are less vulnerable to environmental changes, show decreased fluctuations in population size, have superior establishment success, larger distribution ranges, and are less extinction prone, compared with less variable populations or species”.

A key finding is that variation is more beneficial if conditions are harsh. Study co-author Dr Lena Wennersten explains: “some of the experimental studies included in our review comprise two or more environmental treatments. These experiments indicate that the benefits of diversity are generally expressed more strongly under stressful than under benign conditions”.

The review also uncovered that the relationship linking benefits to diversity is more often linear than curvilinear. But there were exceptions to this pattern. Some studies point to the existence of an optimal level of diversity, and others suggest that the benefits of diversity follow the law of diminishing returns.

These consequences of variation are relevant for conservation work aimed at protection and restoration of biodiversity. For instance, the shape of the relationship that links diversity to population fitness informs how to best allocate conservation resources between competing needs, according to the authors.

The findings in the review align well with the notion that there is strength in diversity. However, the authors also identify important knowledge gaps and issues in need of future investigation. Anders Forsman concludes: “there is still ample opportunity for progress and new discoveries. We hope that our study will spur further interest in this rapidly growing and important area of research”.

Article:
Forsman, A. and Wennersten, L. 2015. Inter-individual variation promotes ecological success of populations and species: evidence from experimental and comparative studies. Ecography, DOI: 10.1111/ecog.01357

Contact information:
Anders Forsman, professor, e-mail: Anders.Forsman@LNU.se; phone: +46-(0)480-44 61 73; cellular phone: +46-(0)706-27 27 38

Lena Wennersten, PhD, e-mail: Lena.Wennersten@LNU.se; phone: +46-(0)480-44 62 27; cellular phone: +46-(0)733-26 18 51

Pressofficer Christina Dahlgren, +46-(0)470-70 85 51; cellular phone: +46-(0)70-572 26 56

Anders Forsman and Lena Wennersten are members of the Linnaeus University Centre for Ecology and Evolution in Microbial model Systems, EEMiS. http://lnu.se/lnuc/eemis

Anders Forsman’s personal webpage: http://lnu.se/personal/anders.forsman

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1111/ecog.01357/abstract Link to the article

Christina Dahlgren | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>