Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The therapeutic antibody eculizumab caught in action

06.06.2016

In collaboration with Alexion Pharmaceuticals, Inc., scientists from Aarhus University have used X-rays to understand how the therapeutic antibody eculizumab prevents our immune system from destroying red blood cells and damaging kidney tissue.

The scientists in Aarhus studied an important protein from the innate immune system called C5 which is cleaved by enzymes when pathogens invade our body as a defense mechanism. The two C5 fragments formed through this cleavage recruit immune cells to fight the pathogen and may directly kill it.


The atomic structure of C5 (blue) bound to the C5-binding part of eculizumab (yellow) shows how eculizumab blocks the cleavage of C5 in blood circulation. This rescues the red blood cells (red disks) from disruption. In real life the proteins are 500 times smaller than the red blood cells.

Credit: Janus Asbjørn Schatz-Jakobsen

Our own cells are protected against damage caused by cleavage of the C5 protein. But in two rare diseases called paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS), this protection is lost due to mutations in our DNA. Patients suffer as their red blood cells and cells in the kidney are continuously damaged, and the diseases are life-threatening.

The global biopharmaceutical company Alexion, headquartered in the U.S., has developed a therapeutic antibody called eculizumab that prevents the cleavage of C5 and thereby treats the two diseases.

The research was performed by PhD student Janus Asbjørn Schatz-Jakobsen and Professor Gregers Rom Andersen at the Department of Molecular Biology and Genetics at Aarhus University in Denmark in collaboration with scientists at Alexion and is now published in The Journal of Immunology with a figure from the article on the cover of the July issue.

Description of tthe research project

Janus first purified C5 from human blood plasma and then mixed it with a fragment of the eculizumab antibody prepared by Alexion solely for this collaboration. After many attempts, Janus managed to form crystals containing the complex between C5 and the antibody fragment. In the following year, more than 200 crystals were investigated by Janus using very intense X-ray radiation at large international facilities in France.

After a total of 18 months with careful and tedious work, Janus was finally able to describe the atomic structure of C5 bound to the eculizumab fragment. This structure revealed that the antibody creates a physical barrier that prevents the cleaving enzymes from forming contacts with C5.

On the other side of the Atlantic Ocean, scientists at Alexion in parallel performed biochemical experiments in which the function of antibodies carrying mutations in regions responsible for binding to C5 were compared to the normal eculizumab antibody.

Janus Asbjørn Schatz-Jakobsen explains: "When I had finished my atomic model and was awaiting the results from Alexion for comparison, I felt almost like a small child waiting for X-mas eve. When the result arrived by email, I could quickly confirm that there was an excellent agreement between my results and those obtained by the Alexion scientists, which confirmed that my model was correct. It was quite a relief and the results from Alexion also made me discover new exciting aspects of my atomic structure that I had not noticed yet."

The new research has also helped the scientists at Aarhus University to better understand the mechanism by which C5 is cleaved by enzymes in the absence of eculizumab. At Alexion, the atomic structure is now used as a framework to understand in details how their therapeutic antibody works and treats the two diseases.

Read the article published in The Journal of Immunology.

For further information, please contact

Professor Gregers Rom Andersen
gra@mbg.au.dk
mobile: 45-3025-6646

PhD student Janus Asbjørn Schatz-Jakobsen
janusasj@mbg.au.dk
Tel. 45-8715-4201
Department of Molecular Biology and Genetics
Aarhus University, Denmark

http://www.au.dk 

Professor Gregers Rom Andersen | EurekAlert!

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>