Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The therapeutic antibody eculizumab caught in action

06.06.2016

In collaboration with Alexion Pharmaceuticals, Inc., scientists from Aarhus University have used X-rays to understand how the therapeutic antibody eculizumab prevents our immune system from destroying red blood cells and damaging kidney tissue.

The scientists in Aarhus studied an important protein from the innate immune system called C5 which is cleaved by enzymes when pathogens invade our body as a defense mechanism. The two C5 fragments formed through this cleavage recruit immune cells to fight the pathogen and may directly kill it.


The atomic structure of C5 (blue) bound to the C5-binding part of eculizumab (yellow) shows how eculizumab blocks the cleavage of C5 in blood circulation. This rescues the red blood cells (red disks) from disruption. In real life the proteins are 500 times smaller than the red blood cells.

Credit: Janus Asbjørn Schatz-Jakobsen

Our own cells are protected against damage caused by cleavage of the C5 protein. But in two rare diseases called paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS), this protection is lost due to mutations in our DNA. Patients suffer as their red blood cells and cells in the kidney are continuously damaged, and the diseases are life-threatening.

The global biopharmaceutical company Alexion, headquartered in the U.S., has developed a therapeutic antibody called eculizumab that prevents the cleavage of C5 and thereby treats the two diseases.

The research was performed by PhD student Janus Asbjørn Schatz-Jakobsen and Professor Gregers Rom Andersen at the Department of Molecular Biology and Genetics at Aarhus University in Denmark in collaboration with scientists at Alexion and is now published in The Journal of Immunology with a figure from the article on the cover of the July issue.

Description of tthe research project

Janus first purified C5 from human blood plasma and then mixed it with a fragment of the eculizumab antibody prepared by Alexion solely for this collaboration. After many attempts, Janus managed to form crystals containing the complex between C5 and the antibody fragment. In the following year, more than 200 crystals were investigated by Janus using very intense X-ray radiation at large international facilities in France.

After a total of 18 months with careful and tedious work, Janus was finally able to describe the atomic structure of C5 bound to the eculizumab fragment. This structure revealed that the antibody creates a physical barrier that prevents the cleaving enzymes from forming contacts with C5.

On the other side of the Atlantic Ocean, scientists at Alexion in parallel performed biochemical experiments in which the function of antibodies carrying mutations in regions responsible for binding to C5 were compared to the normal eculizumab antibody.

Janus Asbjørn Schatz-Jakobsen explains: "When I had finished my atomic model and was awaiting the results from Alexion for comparison, I felt almost like a small child waiting for X-mas eve. When the result arrived by email, I could quickly confirm that there was an excellent agreement between my results and those obtained by the Alexion scientists, which confirmed that my model was correct. It was quite a relief and the results from Alexion also made me discover new exciting aspects of my atomic structure that I had not noticed yet."

The new research has also helped the scientists at Aarhus University to better understand the mechanism by which C5 is cleaved by enzymes in the absence of eculizumab. At Alexion, the atomic structure is now used as a framework to understand in details how their therapeutic antibody works and treats the two diseases.

Read the article published in The Journal of Immunology.

For further information, please contact

Professor Gregers Rom Andersen
gra@mbg.au.dk
mobile: 45-3025-6646

PhD student Janus Asbjørn Schatz-Jakobsen
janusasj@mbg.au.dk
Tel. 45-8715-4201
Department of Molecular Biology and Genetics
Aarhus University, Denmark

http://www.au.dk 

Professor Gregers Rom Andersen | EurekAlert!

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>