Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secret to an effortless, split-second slime attack

18.03.2015

Researchers explain why a tropical worm's twin jets of paralyzing slime are anything but sluggish

The velvet worm is a slow-moving, unassuming creature. With its soft body, probing antennae, and stubby legs, it looks like a slug on stilts as it creeps along damp logs in tropical climates.


This is a lateral view of the attack by a Peripatus solozanoi.

Courtesy of Cristiano Sampaio-Costa, Bernal Morera-Brenes, Julian Monge-Najera, and Andres Concha.

But it has a secret weapon. In the dark of night, when an unsuspecting cricket or termite crosses its path, the worm unleashes an instantaneous torrent of slime. Two fine jets of the gluey substance spray out of openings on its head, oscillating in all directions to cast a sticky net that entraps prey and stops it in its tracks.

Captivated, so to speak, by the worm's split-second attack, researchers from Harvard School of Engineering and Applied Sciences (SEAS) and from universities in Chile, Costa Rica, and Brazil have been studying the creature from all angles. How, they asked, does such a slow, neurologically simple worm execute such a rapid and perfectly aimed movement?

By applying new insights from anatomy, mathematics, experimental physics, and fluid dynamics, they now have an answer--published today in Nature Communications--and the findings could inspire new microfluidic devices.

Imagine a large syringe equipped, at its narrow tip, with an elastic tube shaped like the neck of a bendy drinking straw. That is apparently the velvet worm's slime-shooting apparatus, from its tail end--where the slime is produced and stored in a reservoir--to a pair of tiny nozzles called papillae on its head. Given this structure, a slow and gentle squeeze on the reservoir is all it takes to eject the slime with great speed and force. Most importantly, the shape and elasticity of the papillae ensure that as the slime exits, it sprays in all directions, like water gushing through a flailing garden hose.

"The geometry of the system allows the worm to squirt fast and cover a wide area. That's the magic," says lead author Andrés Concha, formerly a postdoctoral fellow at Harvard SEAS and now an assistant professor at Adolfo Ibañez University in Chile.

But it's actually not the whole story, as Concha explains. A garden hose is much larger than the tube inside a velvet worm's papillae. To get the flailing-hosepipe effect within such minuscule passages, which range in diameter from 50 to 200 microns, the worm relies on the elasticity and corrugated shape of its papillae. These features lower the fluid velocity necessary to shake the tube.

By identifying the features of the anatomy and material structure that enable the velvet worm to produce wide-spraying jets, the researchers have characterized a new type of flexible microfluidic system that they say could be used to produce fine droplets of liquid or fibrous nets, or to mix together several substances in laboratory or industrial settings.

Concha and coauthor Paula Mellado (also an assistant professor at Adolfo Ibañez University in Chile) were both Kavli Scholars at Harvard SEAS, studying topics relating to fluid dynamics, when the velvet worm project launched.

"After watching the David Attenborough film Life in the Undergrowth with some high-speed footage of the worm's slime jet, I suggested that an elastic-hydrodynamic instability of the nozzle could be a simpler solution to creating a chaotic jet, rather than muscle control," explains coauthor L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics at Harvard SEAS and a Professor of Organismic and Evolutionary biology and of Physics in Harvard's Faculty of Arts and Sciences. "Our work shows that this is indeed the case, and chalks up one more example of how evolution has co-opted a simple physical principle for a behavioral response."

Mahadevan is also a Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering, a Faculty Associate of Harvard University Center for the Environment, and a member of the Kavli Institute for Bionano Science and Technology.

The unusual velvet worms present a host of new questions for future research.

"There are many cool properties of the glue that we need to explore," Concha says. "If you put your fingers close to the mouth of the worm and you get some glue on your fingers, you wait seven seconds and you're stuck. So one ambition is to be able to generate a synthetic glue like that, with biotechnological applications. I think there is some chemistry that we have to learn from the worm."

The diversity of the velvet worms, which make up the genus Onychophora, also poses the question of how the squirting mechanism can have evolved to work in worms that vary greatly in size.

"That's a great biological question," Concha says. "By experience, we know that it works for all of these worms. Now, how they adapt the materials and the inner diameter of the hole inside the papillae, I don't know. It's very impressive. Even for babies, it works. You have a gigantic worm that's eight or nine inches long and the baby is one inch, and already the mechanism is working."

While squirting mechanisms are common among animals, anything other than a straightforward arc of liquid typically requires an active movement and some degree of control. The range of approaches to that problem within the animal kingdom requires continued research.

"Archer fish throw a jet of water, and it just follows a parabolic trajectory. Spitting cobras actively move their head to spray the poor fellow who is in front. And there are other cases--for example, spitting spiders--where the mechanism is unclear," Concha says.

Fortunately, he has access to the venomous spitting spiders at home in Chile, where he plans to study them further. "Some biologists have posed the question, is this elasticity or is there any active mechanism? From what is in the literature up to now, I don't have an answer, so spitting spiders are a nice thing to look forward to."

###

This research was supported in part by the Comisión Nacional de Investigación Científica y Tecnológica (Conicyt) of Chile (PAI 79112004), the Fondo Nacional de Desarrollo Científico y Tecnológico (Fondecyt) of Chile (11130075, 11121397), the Universidad Nacional de Costa Rica, and the MacArthur Foundation.

Additional coauthors included Bernal Morera-Brenes, a biologist at the Universidad Nacional de Costa Rica; Cristiano Sampaio Costa, of the Universidade de Sao Paulo in Brazil; and Julian Monge-Najera, a tropical biologist at the Universidad de Costa Rica.

Media Contact

Caroline Perry
cperry@seas.harvard.edu
617-496-1351

 @HarvardResearch

http://www.harvard.edu 

Caroline Perry | EurekAlert!

Further reports about: Harvard SEAS biologist diameter elasticity fluid dynamics mechanism microfluidic slime

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>