Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The rhythm cells must go by – Daily changes in human cells

10.07.2015

Life is subject to natural rhythms, such as the light and dark cycle or seasonal variation in temperature. A recent study by researchers at the Vetmeduni Vienna, shows that the composition of human cell membranes varies depending on the time of day. These cyclical changes in cell membranes could have a significant impact on health and disease. The results were published in the Journal of Biological Rhythms.

Fatty acids are important components of cell membranes. They have signalling functions within the cells and play a role in controlling metabolic processes in the entire body. Thomas Ruf and Walter Arnold of the Research Institute of Wildlife Ecology at the University of Veterinary Medicine, Vienna, investigated these cyclic fluctuations in human cells.


Fatty acid composition in human cell membranes changes throughout the day.

Photo: Susanne Schwaiger

“Nearly all physiological processes in humans and animals, such as body temperature or heart rate, undergo daily rhythms, and many even exhibit annual fluctuations. We wanted to find out if these rhythms are related to changes in cell membranes,” explains first author Thomas Ruf.

The researchers investigated buccal mucosa cells in 20 subjects over a period of one year. Study participants collected their cells on a predetermined day every month at three hour intervals by intensively rinsing their mouths with water and then freezing the samples in special flasks.

The composition of fatty acids changes during the course of the day

The analysis of the cell membranes revealed significant daily rhythms in eleven fatty acids. Several fatty acids were present in higher concentrations at night, others during the daytime. “The cellular changes have one thing in common: they always occurred at about the same time in all participants. This shows that a clear rhythm is present,” Ruf explains.

“From animal physiology, we know that the fatty acid composition in cell membranes can be remodelled in response to environmental conditions. Fatty acid composition is especially subject to seasonal fluctuations. However, while the participants of our study all showed daily fluctuations, seasonal changes occurred only in individual cases.”

In contrast to wildlife, no clear annual rhythm could be seen in the fatty acid patterns of the study participants. Around one half of the subjects showed yearly rhythms, but these were not synchronous. Some participants exhibited a peak in spring or in summer, while in others the same fatty acid had higher concentrations in autumn or in the winter.

“In western countries, seasons are having an increasingly smaller impact on the body. This is due to the prevalence of artificial light, which makes for longer days, and the long heating season, which minimises temperature fluctuations. Annual rhythms still exist, but these are no longer synchronised with the seasons,” says Ruf.

Certain diseases occur in seasonal rhythms

This remodelling of human cell membranes could be of medical importance. It is known that certain fatty acids such as omega-3 fatty acids offer protection against certain diseases, while others, if taken up in excess, can have negative effects. The composition of the fatty acids in cell membranes may therefore have a variety of different health consequences.

“This may also explain why certain diseases and even death occur at specific times of day. Statistically speaking, heart attacks occur more often in the morning than in the evening. Blood pressure usually rises before noon. We currently do not know exactly what causes the changes in the composition of the cell membranes. The type of food eaten and the time of food intake may also play a role. These questions must still be researched,” Ruf points out.

In addition to consuming sufficient quantities of important healthy fatty acids such as omega-3 fatty acids in fish oil or oleic acids in olive oil, it may also be important to choose the right time for intake.

Service:
The article "Daily and Seasonal Rhythms in Human Mucosa Phospholipid Fatty Acid Composition" by Thomas Ruf and Walter Arnold was published in the international Journal of Biological Rhythms. doi: 10.1177/0748730415588190
http://www.ncbi.nlm.nih.gov/pubmed/26045067

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Thomas Ruf
Research Institute of Wildlife Ecology
University of Veterinary Medicine, Vienna
T 43 1 250 777 150
T 43 681 84243101
thomas.ruf@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

How fires are changing the tundra’s face

12.12.2017 | Ecology, The Environment and Conservation

Telescopes team up to study giant galaxy

12.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>