Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The rhythm cells must go by – Daily changes in human cells

10.07.2015

Life is subject to natural rhythms, such as the light and dark cycle or seasonal variation in temperature. A recent study by researchers at the Vetmeduni Vienna, shows that the composition of human cell membranes varies depending on the time of day. These cyclical changes in cell membranes could have a significant impact on health and disease. The results were published in the Journal of Biological Rhythms.

Fatty acids are important components of cell membranes. They have signalling functions within the cells and play a role in controlling metabolic processes in the entire body. Thomas Ruf and Walter Arnold of the Research Institute of Wildlife Ecology at the University of Veterinary Medicine, Vienna, investigated these cyclic fluctuations in human cells.


Fatty acid composition in human cell membranes changes throughout the day.

Photo: Susanne Schwaiger

“Nearly all physiological processes in humans and animals, such as body temperature or heart rate, undergo daily rhythms, and many even exhibit annual fluctuations. We wanted to find out if these rhythms are related to changes in cell membranes,” explains first author Thomas Ruf.

The researchers investigated buccal mucosa cells in 20 subjects over a period of one year. Study participants collected their cells on a predetermined day every month at three hour intervals by intensively rinsing their mouths with water and then freezing the samples in special flasks.

The composition of fatty acids changes during the course of the day

The analysis of the cell membranes revealed significant daily rhythms in eleven fatty acids. Several fatty acids were present in higher concentrations at night, others during the daytime. “The cellular changes have one thing in common: they always occurred at about the same time in all participants. This shows that a clear rhythm is present,” Ruf explains.

“From animal physiology, we know that the fatty acid composition in cell membranes can be remodelled in response to environmental conditions. Fatty acid composition is especially subject to seasonal fluctuations. However, while the participants of our study all showed daily fluctuations, seasonal changes occurred only in individual cases.”

In contrast to wildlife, no clear annual rhythm could be seen in the fatty acid patterns of the study participants. Around one half of the subjects showed yearly rhythms, but these were not synchronous. Some participants exhibited a peak in spring or in summer, while in others the same fatty acid had higher concentrations in autumn or in the winter.

“In western countries, seasons are having an increasingly smaller impact on the body. This is due to the prevalence of artificial light, which makes for longer days, and the long heating season, which minimises temperature fluctuations. Annual rhythms still exist, but these are no longer synchronised with the seasons,” says Ruf.

Certain diseases occur in seasonal rhythms

This remodelling of human cell membranes could be of medical importance. It is known that certain fatty acids such as omega-3 fatty acids offer protection against certain diseases, while others, if taken up in excess, can have negative effects. The composition of the fatty acids in cell membranes may therefore have a variety of different health consequences.

“This may also explain why certain diseases and even death occur at specific times of day. Statistically speaking, heart attacks occur more often in the morning than in the evening. Blood pressure usually rises before noon. We currently do not know exactly what causes the changes in the composition of the cell membranes. The type of food eaten and the time of food intake may also play a role. These questions must still be researched,” Ruf points out.

In addition to consuming sufficient quantities of important healthy fatty acids such as omega-3 fatty acids in fish oil or oleic acids in olive oil, it may also be important to choose the right time for intake.

Service:
The article "Daily and Seasonal Rhythms in Human Mucosa Phospholipid Fatty Acid Composition" by Thomas Ruf and Walter Arnold was published in the international Journal of Biological Rhythms. doi: 10.1177/0748730415588190
http://www.ncbi.nlm.nih.gov/pubmed/26045067

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Thomas Ruf
Research Institute of Wildlife Ecology
University of Veterinary Medicine, Vienna
T 43 1 250 777 150
T 43 681 84243101
thomas.ruf@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>