Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The rhythm cells must go by – Daily changes in human cells

10.07.2015

Life is subject to natural rhythms, such as the light and dark cycle or seasonal variation in temperature. A recent study by researchers at the Vetmeduni Vienna, shows that the composition of human cell membranes varies depending on the time of day. These cyclical changes in cell membranes could have a significant impact on health and disease. The results were published in the Journal of Biological Rhythms.

Fatty acids are important components of cell membranes. They have signalling functions within the cells and play a role in controlling metabolic processes in the entire body. Thomas Ruf and Walter Arnold of the Research Institute of Wildlife Ecology at the University of Veterinary Medicine, Vienna, investigated these cyclic fluctuations in human cells.


Fatty acid composition in human cell membranes changes throughout the day.

Photo: Susanne Schwaiger

“Nearly all physiological processes in humans and animals, such as body temperature or heart rate, undergo daily rhythms, and many even exhibit annual fluctuations. We wanted to find out if these rhythms are related to changes in cell membranes,” explains first author Thomas Ruf.

The researchers investigated buccal mucosa cells in 20 subjects over a period of one year. Study participants collected their cells on a predetermined day every month at three hour intervals by intensively rinsing their mouths with water and then freezing the samples in special flasks.

The composition of fatty acids changes during the course of the day

The analysis of the cell membranes revealed significant daily rhythms in eleven fatty acids. Several fatty acids were present in higher concentrations at night, others during the daytime. “The cellular changes have one thing in common: they always occurred at about the same time in all participants. This shows that a clear rhythm is present,” Ruf explains.

“From animal physiology, we know that the fatty acid composition in cell membranes can be remodelled in response to environmental conditions. Fatty acid composition is especially subject to seasonal fluctuations. However, while the participants of our study all showed daily fluctuations, seasonal changes occurred only in individual cases.”

In contrast to wildlife, no clear annual rhythm could be seen in the fatty acid patterns of the study participants. Around one half of the subjects showed yearly rhythms, but these were not synchronous. Some participants exhibited a peak in spring or in summer, while in others the same fatty acid had higher concentrations in autumn or in the winter.

“In western countries, seasons are having an increasingly smaller impact on the body. This is due to the prevalence of artificial light, which makes for longer days, and the long heating season, which minimises temperature fluctuations. Annual rhythms still exist, but these are no longer synchronised with the seasons,” says Ruf.

Certain diseases occur in seasonal rhythms

This remodelling of human cell membranes could be of medical importance. It is known that certain fatty acids such as omega-3 fatty acids offer protection against certain diseases, while others, if taken up in excess, can have negative effects. The composition of the fatty acids in cell membranes may therefore have a variety of different health consequences.

“This may also explain why certain diseases and even death occur at specific times of day. Statistically speaking, heart attacks occur more often in the morning than in the evening. Blood pressure usually rises before noon. We currently do not know exactly what causes the changes in the composition of the cell membranes. The type of food eaten and the time of food intake may also play a role. These questions must still be researched,” Ruf points out.

In addition to consuming sufficient quantities of important healthy fatty acids such as omega-3 fatty acids in fish oil or oleic acids in olive oil, it may also be important to choose the right time for intake.

Service:
The article "Daily and Seasonal Rhythms in Human Mucosa Phospholipid Fatty Acid Composition" by Thomas Ruf and Walter Arnold was published in the international Journal of Biological Rhythms. doi: 10.1177/0748730415588190
http://www.ncbi.nlm.nih.gov/pubmed/26045067

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Thomas Ruf
Research Institute of Wildlife Ecology
University of Veterinary Medicine, Vienna
T 43 1 250 777 150
T 43 681 84243101
thomas.ruf@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

Understanding animal social networks can aid wildlife conservation

23.06.2017 | Ecology, The Environment and Conservation

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>