Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The principle of optical illusions technically imitated

06.11.2017

The human brain must cope with a large variety of information simultaneously so we can orientate ourselves in our environment and make quick decisions. How exactly it processes the gigantic data stream provided by our sense organs has still not been fully researched. For a deeper understanding of how the brain works, scientists at Kiel University attempt to imitate this biological processing of information technically. Now, using the example of optical illusions, the researchers have demonstrated how processes of perception can be copied in an electronic circuit made of nanoelectronic components. Their results have been published in the scientific journal Science Advances.

How an electrical circuit can imitate processes of perception can be particularly well illustrated using optical illusions, i.e. images that convey contradictory information to our perception. An example: at first glance, a drawing shows a normal hippo. But if you look closer, you see that something is wrong.


Marina Ignatov, a doctoral researcher in electrical engineering and lead author of the publication, shows an electronic circuit with which the perception processes of the human brain can be imitated.

Foto/Copyright: Julia Siekmann, CAU


Optical illusions like this one convey conflicting information. The Kiel research team uses them to show how our brain connects information.

Foto/Copyright: AG Nanoelektronik

Some of the hippo’s legs are drawn so that they can neither be clearly assigned to the animal’s body, nor to the background. An optical illusion like this provides so-called "competing information", which is initially confusing for our brain.

On this basis, it is simple to follow how our brain connects pieces of information. "It is quite difficult for people to recognise errors in optical illusions," explained private lecturer Dr Martin Ziegler from the Nanoelectronics working group at the Faculty of Engineering. "Because in general, our brain automatically creates a correct picture - in this case, the complete hippo. We need meaningful information to be able to make decisions quickly."

The key to perceiving both interpretations of the image is concentration. It is one of the central principles our brain works by. Because what we focus our perception on, shapes our image of reality. To clarify this, the Kiel research team coloured the background of the drawing dark. This way they direct your attention to the legs of the hippo in the foreground, making it easier to recognise the incorrectly-drawn feet.

With such perception processes, the frequency with which we identify specific patterns also plays a role: "If I look at the legs of the hippo a hundred times, and only ten times at the background, it is more likely that I will recognise a picture of a complete hippo," explained Marina Ignatov, a doctoral researcher in the Nanoelectronics working group.

Why can we perceive objects?

Behind the interest of research in optical illusions lies a central neuroscientific issue, which is also referred to as the “binding problem”: how does our brain construct a uniform perception from a variety of sensory impressions, and thus recognise objects, for example? Electrical impulses constantly transmit information between neurons in the brain, where there are respective independent networks responsible for vision, sound or touch, for example. In order to consciously perceive things, different areas of the brain must exchange information and re-link themselves again and again.

For this purpose, the activity of neurons is synchronised - i.e. they work in step with each other. This can be seen in people by measuring the electrical activity in the brain (an EEG). "Synchronicity is already recognised as a functional principle of the brain. But we do not yet know how our brain connects its various areas, and thereby constantly changes its sub-networks," explained Professor Hermann Kohlstedt, head of the Nanoelectronics working group. It is believed that factors such as concentration, which we focus on certain objects in our area of perception, lead to information being linked.

Biological processes copied electrically

In order to understand which processes take place during the linking of information, the Kiel research team developed an electronic circuit made of oscillators. This circuit generates periodic voltage pulses in real time, and thereby works similarly to neurons in the brain. The researchers used special nanoelectronic components to link and synchronise the oscillators. These components are known as "memristors" (from the words "memory" and "resistor"). They are able to store electrical states, similar to the processes in the brain which occur during the linking of information.

"The frequency of the electrical pulses which we subject the memristors to is thereby comparable with concentration in the human perception process. The higher the number of pulses, the higher the probability that there is a connection between the artificial neurons," explained Mirko Hansen, a doctoral researcher in the Nanoelectronics working group, and co-author of the publication. The intensity of these connections can be controlled via the memristors. This changes the connections in the electronic network, similar to the constantly adapting synapses between the sub-networks in the brain.

The work originated within the national collaborative research project "Memristive devices for neuronal systems" (Research Group 2093), which is funded by the German Research Foundation (DFG). Here, scientists from the fields of physics, electrical engineering, materials science and medicine work together. "Our long-term goal is to simulate higher brain functions which form so-called cognitive, electronic systems. These can be self-learning systems, for example, which - in the distant future - can maybe even develop something like empathy," said Professor Hermann Kohlstedt, spokesperson for Research Group 2093.

Original publication:
Memristive stochastic plasticity enables mimicking of neural synchrony: Memristive circuit emulates an optical illusion. Marina Ignatov, Martin Ziegler, Mirko Hansen and Hermann Kohlstedt, Science Advances 25 Oct 2017: Vol. 3, no. 10, e1700849, DOI: 10.1126/sciadv.1700849 http://advances.sciencemag.org/content/3/10/e1700849

Photos are available to download:
http://www.uni-kiel.de/download/pm/2017/2017-326-1.jpg
Marina Ignatov, a doctoral researcher in electrical engineering and lead author of the publication, shows an electronic circuit with which the perception processes of the human brain can be imitated. Electrical oscillators assume the function of the neurons. Memristive components are able to store electrical states, and to simulate synapses in the brain which link the nerve cells together.
Foto/Copyright: Julia Siekmann, CAU

http://www.uni-kiel.de/download/pm/2017/2017-326-2.jpg
With this equipment, Marina Ignatov, Hermann Kohlstedt, Mirko Hansen and Martin Ziegler from the Nanoelectronics working group manufacture the memristive components at the Faculty of Engineering.
Foto/Copyright: Julia Siekmann, CAU

http://www.uni-kiel.de/download/pm/2017/2017-326-3.jpg
The memristive components are manufactured on thin silicon discs, so-called wafers. A total of 40,000 memristive components are located on one wafer, which consists of layers of silver, titanium oxide and aluminium, and is able to store electrical states.
Foto/Copyright: Julia Siekmann, CAU

http://www.uni-kiel.de/download/pm/2017/2017-326-4.png
A normal hippo - or are the legs missing? Optical illusions like this one convey conflicting information. The Kiel research team uses them to show how our brain connects information.
Foto/Copyright: AG Nanoelektronik

Contact:
PD Dr Martin Ziegler
Nanoelectronics working group
Research group 2093 “Memristive devices for neuronal systems”
Tel.: +49 (0)431 880-6067
E-mail: maz@tf.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Press, Communication and Marketing, Dr Boris Pawlowski, Text/editing: Julia Siekmann
Postal address: D-24098 Kiel, Germany,
Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

Further information:
Collaborative research project
„Memristive devices for neural systems“ (FOR 2093):
http://www.for2093.uni-kiel.de

Details, which are only a millionth of a millimetre in size: This is what the research focus "Kiel Nano, Surface and Interface Science – KiNSIS" at Kiel University has been working on. In the nano-cosmos, different laws prevail than in the macroscopic world - those of quantum physics. Through intensive, interdisciplinary cooperation between materials science, chemistry, physics, biology, electrical engineering, computer science, food technology and various branches of medicine, the research focus aims to understand the systems in this dimension and to implement the findings in an application-oriented manner. Molecular machines, innovative sensors, bionic materials, quantum computers, advanced therapies and much more could be the result. More information at http://www.kinsis.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Fast Personalized Therapeutic Choices Thanks to the Light-Based Sorting of Biomolecules and Cells
06.11.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Chemists have created compounds that can treat glaucoma
06.11.2017 | RUDN University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

Im Focus: Researchers develop chip-scale optical abacus

A team of researchers led by Prof. Wolfram Pernice from the Institute of Physics at Münster University has developed a miniature abacus on a microchip which calculates using light signals. With it they are paving the way to the development of new types of computer in which, as in the human brain, the computing and storage functions are combined in one element.

Researchers at the universities of Münster, Exeter and Oxford have developed a miniature “abacus” which can be used for calculating with light signals. With it...

Im Focus: Lightwave controlled nanoscale electron acceleration sets the pace

Extremely short electron bunches are key to many new applications including ultrafast electron microscopy and table-top free-electron lasers. A german team of physicists from Rostock University, the Max Born Institute in Berlin, the Ludwig-Maxmilians-Universität Munich, and the Max Planck Institute of Quantum Optics in Garching has now shown how electrons can be accelerated in an extreme and well-controlled way with laser light, while crossing a silver particle of just a few nanometers.

Of particular importance for potential applications is the ability to manipulate the acceleration process, known as a swing-by maneuver from space travel, with...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Quantum computing on the move

06.11.2017 | Information Technology

Fast Personalized Therapeutic Choices Thanks to the Light-Based Sorting of Biomolecules and Cells

06.11.2017 | Life Sciences

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health

06.11.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>