Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The nutritionists within

01.12.2014

Firebugs depend on gut bacteria for vitamin supply. Scientists of the Max Planck Institute for Chemical Ecology in Jena, Germany, found that bacterial symbionts in the insects’ gut produce these vitamins and thereby ensure the host’s metabolic stability.

The vitamin supply provided by the symbionts directly influences the gene regulation of their host: If the bacterial associates are absent, the bugs show a characteristic vitamin deficiency response.


European firebug Pyrrhocoris apterus

Martin Kaltenpoth / Max Planck Institute for Chemical Ecology


African cotton stainer Dysdercus fasciatus

Martin Kaltenpoth / Max Planck Institute for Chemical Ecology

However, the symbiosis between the bugs and their bacteria is not necessarily a harmonious one: The insects are proposed to actively harvest the vitamins from the bacteria by using specific enzymes that burst open the bacterial cell walls.

Microbial partners are important for the nutrition of many insects. They help detoxify and digest food, but also provide essential nutrients that insects need in order to survive. The European firebug Pyrrhocoris apterus and the African cotton stainer Dysdercus fasciatus feed mainly on plant seeds that are poor sources of essential B vitamins.

Scientists of the Max Planck Research Group Insect Symbiosis at the Max Planck Institute for Chemical Ecology in Jena, Germany, together with colleagues at the Friedrich Schiller University, have now found that bacterial symbionts in the insects’ gut produce these vitamins and thereby ensure the host’s metabolic stability and, ultimately, survival.

Interestingly, the vitamin supply provided by the symbionts directly influences the gene regulation of their host: If the bacterial associates are absent, the bugs show a characteristic vitamin deficiency response. However, the symbiosis between the bugs and their bacteria is not necessarily a harmonious one: The insects are proposed to actively harvest the vitamins from the bacteria by using specific enzymes that burst open the bacterial cell walls. (Proceedings of the Royal Society B: Biological Sciences, November 2014).

In their quest for a balanced meal plan, firebugs – and many other animals – depend on dietary supplements. Firebugs are a group of terrestrial insects that includes the ubiquitously found European firebug Pyrrhocoris apterus as well as the agricultural pest, the African cotton stainer Dysdercus fasciatus. As demonstrated previously, firebugs depend on their gut microbes for successful development.

The symbiotic bacteria from the Coriobacteriaceae family provide essential vitamins. Microbe-free bugs suffer high mortality and produce fewer young than bugs that have their microbial partners (see our press release “Bugs need symbiotic bacteria to exploit plant seeds” - http://www.ice.mpg.de/ext/976.html , January 9, 2013).

Controlled experiments by the scientists from Jena implicate the bacterial symbionts in supplementing B vitamins to firebugs as an important feature of this association. Firebugs that lack their symbionts, but are reared on an artificial diet rich in B vitamins do perfectly fine compared to bugs that have their microbes. It is only when B vitamins are eliminated from the artificial diet that symbiont-free bugs are observed to suffer high mortality during their juvenile stages.

What is even more striking is the effect of symbiont absence on the host’s metabolism. “As a condition of nutrient limitation, firebugs that lack their symbionts were found to exhibit a different metabolic profile; one that can be restored either through the artificial supply of B-vitamins into their diet, or by reintroducing the insect to its symbionts,” Hassan Salem, the first author of the study explains. Profiling the expression patterns of host genes revealed that the insect significantly increases the abundance of B vitamin transporters and activation enzymes when reared in the absence of its gut microbes.

As the scientists found out, proteins that carry out the active transport of B vitamins across the gut epithelium and into cells are expressed in higher amounts when the host is lacking these important nutrients, as a means of increasing the efficiency in scraping the scarce vitamins together from the gut content. Supplementing B vitamins into the insect’s diet or reestablishing the symbiotic partnership restores normal expression patterns of those genes.

An examination into the host’s immune response to symbiont presence suggests that firebugs actively harvest their bacterial partners by lysing, or bursting open, the bacterial cells. This enables them to take up the free vitamins from the dead cells. The expression of genes encoding special antimicrobial peptides, specifically, lysozyme, supports this assumption.

“Vitamin supplementation is probably too friendly of a word. Surrendered is somewhat more accurate, given how the host is thought to extract the vitamins from its microbes, it basically exploits the microbes to gain the benefits. Still, since only a fraction of the symbiont population is harvested, the microbes likely benefit from the association with the host by gaining nutrition in the bug’s gut and a secured transmission route to the next generation,” says Hassan Salem.

While strides have been made in our effort to understand the importance of the complex human microbiome, the exact functions of the majority of our gut associates remain unknown, as is their impact on our metabolism and overall physiology. As such, valuable insights can be gained from insects and their often simple and experimentally tractable microbial communities. [HS/MK/AO]

Original Publication:
Salem H, Bauer E, Strauss A, Vogel H, Marz M, Kaltenpoth M. (2014) Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proceedings of the Royal Society B: Biological Sciences. 281, 2014183
http://dx.doi.org/10.1098/rspb.2014.1838

Further Information:
Dr. Martin Kaltenpoth, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57-1800, E-Mail mkaltenpoth@ice.mpg.de
Dr. Hassan Salem, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57-1804, E-Mail hsalem@ice.mpg.de

Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download of high resolution images via http://www.ice.mpg.de/ext/735.html


Weitere Informationen:

http://www.ice.mpg.de/ext/1174.html?&L=0

Angela Overmeyer | Max-Planck-Institut

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>