Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The nutritionists within

01.12.2014

Firebugs depend on gut bacteria for vitamin supply. Scientists of the Max Planck Institute for Chemical Ecology in Jena, Germany, found that bacterial symbionts in the insects’ gut produce these vitamins and thereby ensure the host’s metabolic stability.

The vitamin supply provided by the symbionts directly influences the gene regulation of their host: If the bacterial associates are absent, the bugs show a characteristic vitamin deficiency response.


European firebug Pyrrhocoris apterus

Martin Kaltenpoth / Max Planck Institute for Chemical Ecology


African cotton stainer Dysdercus fasciatus

Martin Kaltenpoth / Max Planck Institute for Chemical Ecology

However, the symbiosis between the bugs and their bacteria is not necessarily a harmonious one: The insects are proposed to actively harvest the vitamins from the bacteria by using specific enzymes that burst open the bacterial cell walls.

Microbial partners are important for the nutrition of many insects. They help detoxify and digest food, but also provide essential nutrients that insects need in order to survive. The European firebug Pyrrhocoris apterus and the African cotton stainer Dysdercus fasciatus feed mainly on plant seeds that are poor sources of essential B vitamins.

Scientists of the Max Planck Research Group Insect Symbiosis at the Max Planck Institute for Chemical Ecology in Jena, Germany, together with colleagues at the Friedrich Schiller University, have now found that bacterial symbionts in the insects’ gut produce these vitamins and thereby ensure the host’s metabolic stability and, ultimately, survival.

Interestingly, the vitamin supply provided by the symbionts directly influences the gene regulation of their host: If the bacterial associates are absent, the bugs show a characteristic vitamin deficiency response. However, the symbiosis between the bugs and their bacteria is not necessarily a harmonious one: The insects are proposed to actively harvest the vitamins from the bacteria by using specific enzymes that burst open the bacterial cell walls. (Proceedings of the Royal Society B: Biological Sciences, November 2014).

In their quest for a balanced meal plan, firebugs – and many other animals – depend on dietary supplements. Firebugs are a group of terrestrial insects that includes the ubiquitously found European firebug Pyrrhocoris apterus as well as the agricultural pest, the African cotton stainer Dysdercus fasciatus. As demonstrated previously, firebugs depend on their gut microbes for successful development.

The symbiotic bacteria from the Coriobacteriaceae family provide essential vitamins. Microbe-free bugs suffer high mortality and produce fewer young than bugs that have their microbial partners (see our press release “Bugs need symbiotic bacteria to exploit plant seeds” - http://www.ice.mpg.de/ext/976.html , January 9, 2013).

Controlled experiments by the scientists from Jena implicate the bacterial symbionts in supplementing B vitamins to firebugs as an important feature of this association. Firebugs that lack their symbionts, but are reared on an artificial diet rich in B vitamins do perfectly fine compared to bugs that have their microbes. It is only when B vitamins are eliminated from the artificial diet that symbiont-free bugs are observed to suffer high mortality during their juvenile stages.

What is even more striking is the effect of symbiont absence on the host’s metabolism. “As a condition of nutrient limitation, firebugs that lack their symbionts were found to exhibit a different metabolic profile; one that can be restored either through the artificial supply of B-vitamins into their diet, or by reintroducing the insect to its symbionts,” Hassan Salem, the first author of the study explains. Profiling the expression patterns of host genes revealed that the insect significantly increases the abundance of B vitamin transporters and activation enzymes when reared in the absence of its gut microbes.

As the scientists found out, proteins that carry out the active transport of B vitamins across the gut epithelium and into cells are expressed in higher amounts when the host is lacking these important nutrients, as a means of increasing the efficiency in scraping the scarce vitamins together from the gut content. Supplementing B vitamins into the insect’s diet or reestablishing the symbiotic partnership restores normal expression patterns of those genes.

An examination into the host’s immune response to symbiont presence suggests that firebugs actively harvest their bacterial partners by lysing, or bursting open, the bacterial cells. This enables them to take up the free vitamins from the dead cells. The expression of genes encoding special antimicrobial peptides, specifically, lysozyme, supports this assumption.

“Vitamin supplementation is probably too friendly of a word. Surrendered is somewhat more accurate, given how the host is thought to extract the vitamins from its microbes, it basically exploits the microbes to gain the benefits. Still, since only a fraction of the symbiont population is harvested, the microbes likely benefit from the association with the host by gaining nutrition in the bug’s gut and a secured transmission route to the next generation,” says Hassan Salem.

While strides have been made in our effort to understand the importance of the complex human microbiome, the exact functions of the majority of our gut associates remain unknown, as is their impact on our metabolism and overall physiology. As such, valuable insights can be gained from insects and their often simple and experimentally tractable microbial communities. [HS/MK/AO]

Original Publication:
Salem H, Bauer E, Strauss A, Vogel H, Marz M, Kaltenpoth M. (2014) Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proceedings of the Royal Society B: Biological Sciences. 281, 2014183
http://dx.doi.org/10.1098/rspb.2014.1838

Further Information:
Dr. Martin Kaltenpoth, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57-1800, E-Mail mkaltenpoth@ice.mpg.de
Dr. Hassan Salem, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57-1804, E-Mail hsalem@ice.mpg.de

Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download of high resolution images via http://www.ice.mpg.de/ext/735.html


Weitere Informationen:

http://www.ice.mpg.de/ext/1174.html?&L=0

Angela Overmeyer | Max-Planck-Institut

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>