Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mending tissue -- Cellular instructions for tissue repair

25.08.2015

NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development

A collaborative study led by scientists at the Mechanobiology Institute (MBI) at the National University of Singapore (NUS) has described a universal mechanism that regulates forces during epithelial tissue repair.


The researchers found that cells at the convex edge moved in faster than those at the concave edges. The image above depicts the shape used throughout the investigation which was chosen for its very large range of curvature (from highly convex to highly concave). The green structures protruding into the gap are the lamellipodia or the actin structures that are used in the cell crawling mechanism, while the white and magenta ring surrounding the gap shows the actomyosin cable used in the purse-string mechanism. The cell nuclei are represented in blue.

Credit: Mechanobiology Institute, National University of Singapore

This work, led by MBI co-Principal Investigator Professor Benoit Ladoux and conducted in collaboration with scientists from the Pierre et Marie Curie University, France; the Institute for Bioengineering of Catalonia, Spain; Chronic Disease Research Centre, Portugal, the Weizmann Institute, Israel; and the Cambridge University, UK, was published in prestigious scientific journal Nature Communications in July 2015.

How tissue shape regulates wound repair mechanisms

The epithelial tissue, or the epithelium, is one of four major types of tissue that lines the surfaces of all organs and hollow spaces in our body. The epithelium protects the organs from damage and maintains the body in a state of balance by allowing a selective in-and-out passage of substances. Proper function of the epithelium requires an intact layer of epithelial cells.

During the lifetime of an organism, gaps or holes of different sizes and shapes are introduced into this intact epithelium. They may appear as a consequence of natural biological processes such as embryo development when cells move around and rearrange to establish body patterns, or during cell turnover in adult tissues, when dead cells are cleared away by neighbouring healthy cells. In addition, injury or disease may also lead to wounds or ulcers in the tissue. In either case, any gap in the tissue needs to be sealed so that the normal functioning of the tissue is restored.

In the likelihood of an open wound or gap causing complications such as infections, inflammation or even cancer, our body has developed two major repair mechanisms whereby cells surrounding the gap collectively move in and seal the open spaces completely.

To do so, cells either put forth finger-like protrusions called lamellipodia to crawl along the underlying surface or form an interconnecting belt or cable of actin filaments and myosin proteins. When this cable contracts, it pulls the cells closer in a coordinated fashion, similar to the action of drawing a purse-string. However, the extent to which either mechanism contributes to tissue repair is known to depend on several factors such as the gap geometry, gap size or the presence or absence of an underlying supporting surface.

To determine the impact of tissue geometry on gap closure, the international research team studied the effects of gap shapes on gap closure mechanisms.

By using microfabrication techniques to grow epithelial cells around stencils made of an inert polymer, they created gaps of desired shapes within the cell culture. The boundaries of the gap were either protruding inwards (concave edges) or were extending away (convex edges).

Interestingly, the researchers noted that the speed at which cells along the gap edge moved depended on the local curvature. Specifically, they found that cells at the convex edge moved in faster than those at the concave edges. To test the relevance of their findings in a living system, the researchers studied wound repair in flies and found a similar association between wound shape and wound repair.

The current study has identified a universal mechanism that explains how the geometrical properties of tissue regulate forces and guide cellular movement during physiological processes such as cell turnover, embryo development and wound healing. Cells essentially receive the instructions on how to close a gap by sensing and measuring the shape of the gap itself. Further understanding of how cells do this will help researchers know how to treat chronic medical conditions involving wounds or unsealed gaps as well as designing new substrates to optimise tissue regeneration.

Media Contact

Amal Naquiah
amal@nus.edu.sg
65-651-65125

 @NUSingapore

http://www.nus.edu.sg/ 

Amal Naquiah | EurekAlert!

Further reports about: Cellular embryo development epithelial epithelial tissue epithelium gaps organs processes

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>