Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mending tissue -- Cellular instructions for tissue repair

25.08.2015

NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development

A collaborative study led by scientists at the Mechanobiology Institute (MBI) at the National University of Singapore (NUS) has described a universal mechanism that regulates forces during epithelial tissue repair.


The researchers found that cells at the convex edge moved in faster than those at the concave edges. The image above depicts the shape used throughout the investigation which was chosen for its very large range of curvature (from highly convex to highly concave). The green structures protruding into the gap are the lamellipodia or the actin structures that are used in the cell crawling mechanism, while the white and magenta ring surrounding the gap shows the actomyosin cable used in the purse-string mechanism. The cell nuclei are represented in blue.

Credit: Mechanobiology Institute, National University of Singapore

This work, led by MBI co-Principal Investigator Professor Benoit Ladoux and conducted in collaboration with scientists from the Pierre et Marie Curie University, France; the Institute for Bioengineering of Catalonia, Spain; Chronic Disease Research Centre, Portugal, the Weizmann Institute, Israel; and the Cambridge University, UK, was published in prestigious scientific journal Nature Communications in July 2015.

How tissue shape regulates wound repair mechanisms

The epithelial tissue, or the epithelium, is one of four major types of tissue that lines the surfaces of all organs and hollow spaces in our body. The epithelium protects the organs from damage and maintains the body in a state of balance by allowing a selective in-and-out passage of substances. Proper function of the epithelium requires an intact layer of epithelial cells.

During the lifetime of an organism, gaps or holes of different sizes and shapes are introduced into this intact epithelium. They may appear as a consequence of natural biological processes such as embryo development when cells move around and rearrange to establish body patterns, or during cell turnover in adult tissues, when dead cells are cleared away by neighbouring healthy cells. In addition, injury or disease may also lead to wounds or ulcers in the tissue. In either case, any gap in the tissue needs to be sealed so that the normal functioning of the tissue is restored.

In the likelihood of an open wound or gap causing complications such as infections, inflammation or even cancer, our body has developed two major repair mechanisms whereby cells surrounding the gap collectively move in and seal the open spaces completely.

To do so, cells either put forth finger-like protrusions called lamellipodia to crawl along the underlying surface or form an interconnecting belt or cable of actin filaments and myosin proteins. When this cable contracts, it pulls the cells closer in a coordinated fashion, similar to the action of drawing a purse-string. However, the extent to which either mechanism contributes to tissue repair is known to depend on several factors such as the gap geometry, gap size or the presence or absence of an underlying supporting surface.

To determine the impact of tissue geometry on gap closure, the international research team studied the effects of gap shapes on gap closure mechanisms.

By using microfabrication techniques to grow epithelial cells around stencils made of an inert polymer, they created gaps of desired shapes within the cell culture. The boundaries of the gap were either protruding inwards (concave edges) or were extending away (convex edges).

Interestingly, the researchers noted that the speed at which cells along the gap edge moved depended on the local curvature. Specifically, they found that cells at the convex edge moved in faster than those at the concave edges. To test the relevance of their findings in a living system, the researchers studied wound repair in flies and found a similar association between wound shape and wound repair.

The current study has identified a universal mechanism that explains how the geometrical properties of tissue regulate forces and guide cellular movement during physiological processes such as cell turnover, embryo development and wound healing. Cells essentially receive the instructions on how to close a gap by sensing and measuring the shape of the gap itself. Further understanding of how cells do this will help researchers know how to treat chronic medical conditions involving wounds or unsealed gaps as well as designing new substrates to optimise tissue regeneration.

Media Contact

Amal Naquiah
amal@nus.edu.sg
65-651-65125

 @NUSingapore

http://www.nus.edu.sg/ 

Amal Naquiah | EurekAlert!

Further reports about: Cellular embryo development epithelial epithelial tissue epithelium gaps organs processes

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>