Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The media is the message: How stem cells grow depends on what they grow up in

05.05.2015

Using mathematical model, UC San Diego researchers devise optimal human stem cell culture

Human pluripotent stem cells (hPSCs) possess the ability to grow into almost any kind of cell, which has made them dynamic tools for studying early human development and disease, but much depends upon what they grow up in.


This image shows colonies of human embryonic stem cells seen with a fluorescent microscope.

Credit: California Institute for Regenerative Medicine

Writing in the May 4 online issue of the journal Scientific Reports, researchers at University of California, San Diego School of Medicine used a powerful statistical tool called "design of experiments" or DOE to determine the optimal cell culture formula to grow and produce hPSCs.

"Currently, there are different culture methods and media that are not optimized or even chemically defined. There are several factors that may affect the growth of stem cells based on batch-to-batch media variation," said Alysson Muotri, PhD, associate professor in the UC San Diego departments of Pediatrics and Cellular and Molecular Medicine. "This affects science in many ways. For example, it slows down progress because conditions may not be pristine. It also makes it difficult for other labs to validate data because the media they use will likely not be the same as in the original experiments."

Muotri and colleagues used DOE to measure two critical growth factors used in hPSC media: basic fibroblast growth factor (bFGF) and neuregulin-1 beta 1 (NRG-1 beta 1). DOE is often used in scientific endeavors to measure and account for variations in data, but not so much in biology, said Muotri.

"If you ask a biology student what is the ideal temperature and pH for an enzyme, he/she will try to determine the best temperature in one experiment and the best pH in another experiment. Then, the student will erroneously conclude that these represent the optimal temperature and pH," said Muotri. "What is missing is the interaction between temperature and pH. The best working temperature may not be the most optimal pH condition. DOE takes into account positive, negative or neutral interactions between multiple factors at the same time."

Building upon earlier work, which had analyzed hundreds of other factors in hPSC media, the researchers determined the best formulations for bFGF and NRG-1 beta 1. They noted, however, that their findings are not fixed. "If science discovers a new factor that affects hPSC proliferation, we can add it into our DOE matrix to quickly test and re-formulate the media," said Muotri.

The researchers hope their findings will lead to a new standard for hPSC cultures. "Any lab in the world can have access to the same formulation, with no variability," said Muotri. "We also think this method could be applied towards the development of culture conditions during differentiation of human stem cells. Ideally, we want to create transition media formulations that subtly change during cell type specialization, mimicking the human embryo."

Muotri said his team is working with the UC San Diego Technology Transfer Office to find industry partners to assist in making the new technology accessible to all laboratories using hPSCs.

###

Co-authors include Paulo A. Marinho and Thanathom Chailangkarn, UCSD Department of Pediatrics/Rady Children's Hospital-San Diego, Department of Cellular and Molecular Medicine and UCSD Stem Cell Program.

Funding for this research came, in part, from the California Institute for Regenerative Medicine and the National Institutes of Health (1-DP2-OD006495-1).

Media Contact

Scott LaFee
slafee@ucsd.edu
619-543-6163

 @UCSanDiego

http://www.ucsd.edu 

Scott LaFee | EurekAlert!

Further reports about: Cellular Department Medicine Molecular Muotri UCSD University of California beta stem cells temperature

More articles from Life Sciences:

nachricht Algae: The final frontier
22.06.2017 | Carnegie Institution for Science

nachricht Flipping the switch to stop tumor development
22.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>