Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Macromolecular Shredder for RNA in the Cell Nucleus

03.08.2015

Much in the same way as we use shredders to destroy documents that are no longer useful or that contain potentially damaging information, cells use molecular machines to degrade unwanted or defective macromolecules.

Scientists of the Max Planck Institute of Biochemistry (MPIB) in Martinsried have now shown how the nuclear compartment of the cell uses a specific version of the RNA exosome, a macromolecular machine responsible for the degradation as well as the biogenesis of ribonucleic acids (RNAs). RNAs are ubiquitous and abundant molecules with multiple functions in the cell. One of their functions is, for example, to permit translation of the genomic information into proteins.


Multiple RNA paths in the nuclear exosome complex during pre-ribosomal processing.

Illustration: Debora Makino / Copyright: MPI of Biochemistry

Any errors that occur during the synthesis of RNA molecules or unwanted accumulation of RNAs can be damaging to the cell. The elimination of defective RNAs or of RNAs that are no longer needed are therefore key steps in the metabolism of a cell.

The exosome, a multi-protein complex, is a key machine that shreds RNA into pieces. In addition, the exosome also processes certain RNA molecules into their mature form. In a study two years ago, scientists in the Research Department ‘Structural Cell Biology’ headed by Elena Conti unveiled the X-ray structure of the exosome core complex. The multi-protein complex consists of nine proteins that form a central substrate channel that ends in the protein Rrp44, the exosome RNA degrading center.

Specific shredders for each compartment of the cell

Different cellular compartments, such as the nucleus or the cytoplasm, have their own specific versions of a larger exosome complex bound to specific helper proteins. The MPIB scientists could now reveal how the exosome in the nucleus works together with two protein-subunits called Rrp6 and Rrp47, which are specific only for RNA substrates of the nucleus.

“We could show that the cell has multiple possible paths of degrading nuclear RNA,” explains Debora Makino, one of the authors of the study. One of the pathways leads the RNA substrate into direct degradation by Rrp6 and/or Rrp44, and the other guides the RNA into the processive degradation by Rrp44 via the core RNA exosome channel path. “In this manner, the cell can degrade RNA substrates either completely or trim them precisely when needed,” says Benjamin Schuch, the other author of the study.

Future research will uncover further RNA processing mechanisms involving the core exosome and its various auxiliary proteins, protein complexes, and RNA substrates located throughout all cell compartments.

Original publication:
D.L. Makino*, B. Schuch*, E. Stegmann, M. Baumgärtner, C. Basquin and E. Conti: RNA degradation paths in a 12-subunit nuclear exosome complex. Nature, July 29, 2015
DOI: 10.1038/nature14865

Weitere Informationen:

http://www.biochem.mpg.de/5092413/20150731_conti_exosome - Detailed Press Release
http://www.biochem.mpg.de/conti - Website of the Research Department 'Structural Cell Biology' (Elena Conti)

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>