Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Macromolecular Shredder for RNA in the Cell Nucleus

03.08.2015

Much in the same way as we use shredders to destroy documents that are no longer useful or that contain potentially damaging information, cells use molecular machines to degrade unwanted or defective macromolecules.

Scientists of the Max Planck Institute of Biochemistry (MPIB) in Martinsried have now shown how the nuclear compartment of the cell uses a specific version of the RNA exosome, a macromolecular machine responsible for the degradation as well as the biogenesis of ribonucleic acids (RNAs). RNAs are ubiquitous and abundant molecules with multiple functions in the cell. One of their functions is, for example, to permit translation of the genomic information into proteins.


Multiple RNA paths in the nuclear exosome complex during pre-ribosomal processing.

Illustration: Debora Makino / Copyright: MPI of Biochemistry

Any errors that occur during the synthesis of RNA molecules or unwanted accumulation of RNAs can be damaging to the cell. The elimination of defective RNAs or of RNAs that are no longer needed are therefore key steps in the metabolism of a cell.

The exosome, a multi-protein complex, is a key machine that shreds RNA into pieces. In addition, the exosome also processes certain RNA molecules into their mature form. In a study two years ago, scientists in the Research Department ‘Structural Cell Biology’ headed by Elena Conti unveiled the X-ray structure of the exosome core complex. The multi-protein complex consists of nine proteins that form a central substrate channel that ends in the protein Rrp44, the exosome RNA degrading center.

Specific shredders for each compartment of the cell

Different cellular compartments, such as the nucleus or the cytoplasm, have their own specific versions of a larger exosome complex bound to specific helper proteins. The MPIB scientists could now reveal how the exosome in the nucleus works together with two protein-subunits called Rrp6 and Rrp47, which are specific only for RNA substrates of the nucleus.

“We could show that the cell has multiple possible paths of degrading nuclear RNA,” explains Debora Makino, one of the authors of the study. One of the pathways leads the RNA substrate into direct degradation by Rrp6 and/or Rrp44, and the other guides the RNA into the processive degradation by Rrp44 via the core RNA exosome channel path. “In this manner, the cell can degrade RNA substrates either completely or trim them precisely when needed,” says Benjamin Schuch, the other author of the study.

Future research will uncover further RNA processing mechanisms involving the core exosome and its various auxiliary proteins, protein complexes, and RNA substrates located throughout all cell compartments.

Original publication:
D.L. Makino*, B. Schuch*, E. Stegmann, M. Baumgärtner, C. Basquin and E. Conti: RNA degradation paths in a 12-subunit nuclear exosome complex. Nature, July 29, 2015
DOI: 10.1038/nature14865

Weitere Informationen:

http://www.biochem.mpg.de/5092413/20150731_conti_exosome - Detailed Press Release
http://www.biochem.mpg.de/conti - Website of the Research Department 'Structural Cell Biology' (Elena Conti)

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

Hidden talents: Converting heat into electricity with pencil and paper

20.02.2018 | Materials Sciences

Rare find from the deep sea

20.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>