Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The 'intraterrestrials': New viruses discovered in ocean depths

01.04.2015

Viruses infect methane-eating archaea beneath the seafloor

The intraterrestrials, they might be called.


The scientists used the deep submergence vehicle Alvin to retrieve sea-floor samples.

Credit: David Valentine

Strange creatures live in the deep sea, but few are odder than the viruses that inhabit deep ocean methane seeps and prey on single-celled microorganisms called archaea.

The least understood of life's three primary domains, archaea thrive in the most extreme environments on the planet: near hot ocean rift vents, in acid mine drainage, in the saltiest of evaporation ponds and in petroleum deposits deep underground.

Virus in the deep blue sea

While searching the ocean's depths for evidence of viruses, scientists have found a remarkable new one, a virus that seemingly infects archaea that live beneath the ocean floor.

The researchers were surprised to discover that the virus selectively targets one of its own genes for mutation, and that this capacity is also shared by archaea themselves.

The findings appear today in a paper in the journal Nature Communications.

The project was supported by a National Science Foundation (NSF) Dimensions of Biodiversity grant to characterize microbial diversity in methane seep ecosystems. Dimensions of Biodiversity is supported by NSF's Directorates for Biological Sciences and Geosciences.

New information about life in ocean depths

"Life far beneath the Earth's subsurface is an enigma," said Matt Kane, program director in NSF's Division of Environmental Biology. "By probing deep into our planet, these scientists have discovered new information about Earth's microbes and how they evolve."

"Our study uncovers mechanisms by which viruses and archaea can adapt in this hostile environment," said David Valentine, a geoscientist at the University of California Santa Barbara (UCSB) and co-author of the paper.

The results, he said, raise new questions about the evolution and interaction of the microbes that call the planet's interior home.

"It's now thought that there's more biomass inside the Earth than anywhere else, just living very slowly in this dark, energy-limited environment," said paper co-author Sarah Bagby of UCSB.

Using the submersible Alvin, Valentine and colleagues collected samples from a deep-ocean methane seep by pushing tubes into the ocean floor and retrieving sediments.

The contents were brought back to the lab and fed methane gas, helping the methane-eating archaea in the samples to grow.

When the team assayed the samples for viral infection, they discovered a new virus with a distinctive genetic fingerprint that suggested its likely host was methane-eating archaea.

Genetic sequence of new virus holds the key

The researchers used the genetic sequence of the new virus to chart other occurrences in global databases.

"We found a partial genetic match from methane seeps off Norway and California," said lead author Blair Paul of UCSB. "The evidence suggests that this viral type is distributed around the globe in deep ocean methane seeps."

Further investigation revealed another unexpected finding: a small genetic element, known as a diversity-generating retroelement, that accelerates mutation of a specific section of the virus's genome.

Such elements had been previously identified in bacteria and their viruses, but never among archaea or the viruses that infect them.

"These researchers have shown that cutting-edge genomic approaches can help us understand how microbes function in remote and poorly known environments such as ocean depths," said David Garrison, program director in NSF's Division of Ocean Sciences.

While the self-guided mutation element in the archaea virus resembles known bacterial elements, the researchers found that it has a divergent evolutionary history.

"The target of guided mutation--the tips of the virus that make first contact when infecting a cell--is similar," said Paul.

"But the ability to mutate those tips is an offensive countermeasure against the cell's defenses, a move that resembles a molecular arms race."

Unusual genetic adaptations

Having found guided mutation in a virus-infecting archaea, the scientists reasoned that archaea themselves might use the same mechanism for genetic adaptation.

In an exhaustive search, they identified parallel features in the genomes of a subterranean group of archaea known as nanoarchaea.

Unlike the deep-ocean virus that uses guided mutation to alter a single gene, the nanoarchaea target at least four distinct genes.

"It's a new record," said Bagby.

"Bacteria had been observed to target two genes with this mechanism. That may not seem like a huge difference, but targeting four is extraordinary."

According to Valentine, the genetic mutation that fosters these potential variations may be key to the survival of archaea beneath the Earth's surface.

"The cell is choosing to modify certain proteins," he said. "It's doing its own protein engineering. While we don't yet know what those proteins are being used for, learning about the process can tell us something about the environment in which these organisms thrive."

###

Viral DNA sequencing was provided through a Gordon and Betty Moore Foundation grant. The research team also included scientists from the University of California, Los Angeles; the University of California, San Diego; and the U.S. Department of Energy's Joint Genome Institute.

Media Contact

Cheryl Dybas
cdybas@nsf.gov
703-292-7734

 @NSF

http://www.nsf.gov 

Cheryl Dybas | EurekAlert!

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>