Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The internal clock of cells orchestrates 25 percent of all protein switches

11.01.2017

Circadian is the latin meaning for “about a day”. Circadian clocks have evolved to adapt our lives to the daily environmental changes on earth: light and warmth during the day and darkness and cold at night. Scientists at the Max-Planck-Institute of Biochemistry in Martinsried discovered with the help of the mass spectrometry, that more than 25 percent of the molecular protein switches in mouse liver cells change in a daily manner. These rhythmic switches are binding sites for phosphate molecules, that regulate the function of proteins, and thereby the daily metabolic processes in the organ. The study was published in the journal Cell Metabolism.

Matthias Mann, head of the department “Proteomics and Signal Transduction” at the Max-Planck-Institute of Biochemistry has optimized, together with his research group, the mass spectrometry for use in the clinic over the last few years. This technology enables analysis of proteins both quantitatively and qualitatively in cells and tissue.


25 percent of the molecular protein switches are active in the rhythm of the internal clock of a cell. This was shown with the help of the mass spectrometry in the livers of mice.

Illustration: Max Iglesias © MPI of Biochemistry

Additionally, mass spectrometry also enables researchers to study the phosphorylation of proteins - the binding of a phosphate molecule can change the structure and the molecular characteristics of the protein. The phosphate molecule thereby functions like a protein switch, capable of changing the protein activity and function.

This method was used by the scientists to investigate whether the inner clock, the circadian clock, in cells and organs can drive changes of these phosphate switches. Charo Robles, head of the study explains: “The circadian clock is the internal timer in the cell. The rotation of the earth leads to periodic changes of the environment, associated with the day and night that influences living organisms. The inner clock allows organisms to predict the daily fluctuations in the environment and thus adapt the cellular metabolism and physiology.

In the past, it was already discovered that a large proportion of the transcriptome, a set of the messenger RNA molecules and the manual for the proteins, as well as a proportion of the proteins themselves in cells and tissues undergo circadian cyclic rhythms of abundance. This study examined in the circadian changes of the phosphoproteome, the whole set of phosphorylation binding sites in proteins, in the mouse liver.

“While approximately 10 percent of the messenger RNA and the proteins cycle daily in their abundance, we now show that more than 25 percent of the protein switches, phosphorylation events, change across the day and night to control the function of the proteins in the liver of mice.”, says Robles. “As a simple analogy in our daily lives: in the morning we switch the computer when we arrive at work, and switch it off again in the evening, while at home we might switch on the TV in the evening.”

With the help of mass spectrometry the scientists were able to analyze the complex network of the protein switches. “We do not detect just one switch but rather we can analyze when the different switches are turned on and off in the whole city as analogue of the cell”. The scientists showed that around 2,000 phosphorylation positions change between the day and night. Some switches were newly discovered in this study.

With this knowledge, when specific proteins are activated we could promote so called “Chronotherapy”. Cellular processes as well as whole organ physiology display cycles of activity across the day. This influences the efficacy and the tolerance of medication. “In the future if we know when in an individual patient specific signaling pathways are activated, we could optimize the treatment of diseases, giving the medication at the appropriate time point to increase efficiency and minimize adverse effects.”, says Robles.

Original publication:
M.S. Robles, S.J. Humphrey & M. Mann: “Phosphorylation is a central mechanism for circadian control of metabolism and physiology”. Cell Metabolism, 2016
DOI: 10.1016/j.cmet.2016.10.004

Prof. Dr. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: mmann@biochem.mpg.de
www.biochem.mpg.de/mann

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/en - homepage max planck institute of biochemistry
http://www.biochem.mpg.de/en/rd/mann - homepage Matthias Mann

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>