Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The inside story: How the brain and skull stay together

05.11.2014

University of Miami researchers discover a network of tissue communication that ensures that the brain and spinal cord are matched with the skull and spinal column, during embryonic development

Think about the way our bodies are assembled during early development and ask: How do neighboring cells know that they are supposed to become a nerve or a bone cell and how do these tissues find the correct place and alignment? Researchers at the University of Miami (UM) are answering these crucial questions.

In a new study, UM researchers describe the signaling systems that tissues use to communicate with their surrounding neighbors, at the head-trunk region. Their discovery may have important implications for the treatment of congenital defects like Spina Bifida and Chiari malformations.

"Our work describes a network of tissue communication events that ensure that the brain stays in the skull and the spinal cord in the spinal column," said Isaac Skromne, assistant professor of Biology in the UM College of Arts and Sciences and principal investigator of the study.

The findings are published in the November issue of the journal Development in a study entitled "Retinoic acid regulates size, pattern and alignment of tissues at the head-trunk transition."

The current study reports two major findings. First, it reveals that cells at the head-trunk junction communicate with each other not only to convey information on the type of tissue they will become, but also their location. Second, the study finds that signaling the identity and location of the tissues are separate events.

Previous work focused on understanding how tissues acquire their identity, without taking into consideration neighboring tissues.

"That is like knowing the size of each plot of land in a city block, without knowing the addresses," Skromne said. "Now we know the addresses as well, and we show that each plot can take different addresses, potentially changing their relationship to the neighboring plots."

For the study, the researchers analyzed zebrafish embryos, knowing that the findings about the development of this organism would be applicable to other vertebrates, said Keun Lee, first author of the paper and a medical student at the UM Miller School of Medicine. Lee carried out the study when he was an undergraduate student working in Dr. Skromne's lab.

"We were hoping to understand the earliest mechanism of organizing nerve and bone-forming tissues in zebrafish embryos, because neuroskeletal malformation in newborn babies could severely compromise function," Lee said. "Knowing the mechanism of the malformation in the zebrafish model would help develop interventions to prevent those defects in humans."

The findings show that the coordination of brain and nerve tissue at the head-trunk transition in the zebrafish depends on two activities of a signaling molecule called retinoic acid. One activity specifies the size and the other the axial position of the hindbrain territory. In the future, the researchers would like to gain understanding of the type of information these signals carry.

"Now that we have the big picture of how the tissues are coordinated to form the neuroskeletal system at the head-trunk transition, we would like to know how tissue-specific genes are regulated," Lee said.

The researchers hope that their findings will lead to the development of therapies that target these signaling networks, to prevent abnormalities on the head-trunk junction.

http://www.miami.edu/news

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of our diversity of our University family, we strive to develop future leaders of our nation and the world.

Annette Gallagher | EurekAlert!

Further reports about: Arts and Sciences Zebrafish acid defects embryos mechanism plot skull spinal zebrafish embryos

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>