Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The inside story: How the brain and skull stay together

05.11.2014

University of Miami researchers discover a network of tissue communication that ensures that the brain and spinal cord are matched with the skull and spinal column, during embryonic development

Think about the way our bodies are assembled during early development and ask: How do neighboring cells know that they are supposed to become a nerve or a bone cell and how do these tissues find the correct place and alignment? Researchers at the University of Miami (UM) are answering these crucial questions.

In a new study, UM researchers describe the signaling systems that tissues use to communicate with their surrounding neighbors, at the head-trunk region. Their discovery may have important implications for the treatment of congenital defects like Spina Bifida and Chiari malformations.

"Our work describes a network of tissue communication events that ensure that the brain stays in the skull and the spinal cord in the spinal column," said Isaac Skromne, assistant professor of Biology in the UM College of Arts and Sciences and principal investigator of the study.

The findings are published in the November issue of the journal Development in a study entitled "Retinoic acid regulates size, pattern and alignment of tissues at the head-trunk transition."

The current study reports two major findings. First, it reveals that cells at the head-trunk junction communicate with each other not only to convey information on the type of tissue they will become, but also their location. Second, the study finds that signaling the identity and location of the tissues are separate events.

Previous work focused on understanding how tissues acquire their identity, without taking into consideration neighboring tissues.

"That is like knowing the size of each plot of land in a city block, without knowing the addresses," Skromne said. "Now we know the addresses as well, and we show that each plot can take different addresses, potentially changing their relationship to the neighboring plots."

For the study, the researchers analyzed zebrafish embryos, knowing that the findings about the development of this organism would be applicable to other vertebrates, said Keun Lee, first author of the paper and a medical student at the UM Miller School of Medicine. Lee carried out the study when he was an undergraduate student working in Dr. Skromne's lab.

"We were hoping to understand the earliest mechanism of organizing nerve and bone-forming tissues in zebrafish embryos, because neuroskeletal malformation in newborn babies could severely compromise function," Lee said. "Knowing the mechanism of the malformation in the zebrafish model would help develop interventions to prevent those defects in humans."

The findings show that the coordination of brain and nerve tissue at the head-trunk transition in the zebrafish depends on two activities of a signaling molecule called retinoic acid. One activity specifies the size and the other the axial position of the hindbrain territory. In the future, the researchers would like to gain understanding of the type of information these signals carry.

"Now that we have the big picture of how the tissues are coordinated to form the neuroskeletal system at the head-trunk transition, we would like to know how tissue-specific genes are regulated," Lee said.

The researchers hope that their findings will lead to the development of therapies that target these signaling networks, to prevent abnormalities on the head-trunk junction.

http://www.miami.edu/news

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of our diversity of our University family, we strive to develop future leaders of our nation and the world.

Annette Gallagher | EurekAlert!

Further reports about: Arts and Sciences Zebrafish acid defects embryos mechanism plot skull spinal zebrafish embryos

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>