Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The innate immune system condemns weak cells to their death

05.12.2014

In cell competition the strong eliminate the weak, thereby ensuring optimal tissue fitness. Molecular biologists at the University of Zurich and Columbia University have now demonstrated that the innate immune system plays a key role in this important mechanism. However, cancer cells also make use of this: they can cause cells that are important for healthy tissue to die.

The “survival of the fittest” principle applies to cells in a tissue - rapidly growing and dividing cells are the fit ones. A relatively less fit cell, even if healthy and viable, will be eliminated by its more fit neighbors. Importantly, this selection mechanism is only activated when cells with varying levels of fitness are present in the same tissue.

If a tissue only consists of less fit cells, then no so-called cell competition occurs. Molecular biologists from the University of Zurich and Columbia University are the first researchers to demonstrate in a study published in the scientific journal Science that this cellular selection process requires the innate immune system.

Innate immune system recognizes weaker cells

Using the fruit fly as a model the researchers demonstrate that during cell competition programmed cell death is activated in the weaker cells. This apoptosis is induced by the signaling protein “Spätzle” that docks onto Toll-related receptors. The Toll-related receptors are part of the ancient innate immune system and normally trigger a defense reaction to bacterial or fungal infection, but as shown by Meyer and colleagues it can also trigger apoptosis in relatively less fit cells.

“Less fit cells are recognized and eliminated with the help of the communication pathway in the innate immune system”, is how primary author Stefanie Meyer explains this astounding phenomenon. According to Professor Konrad Basler it is not yet clear whether the initial signal comes from the winner cells or the weaker loser cells. “We still don’t know whether this involves the voluntary or forced suicide of the less-fit cells.”

When the wrong ones win

Sometimes the stronger cell is not a healthy cell, for example during the development of a tumor cancer cells can “outcompete” their weaker neighbors. In this case it is the healthy cells that fall behind in terms of fitness and are consequently condemned to death by the cell competition mechanism.

“Cancer cells use the innate immune system to drive out the healthy cells”, sums up Laura Johnston from Columbia University. These new findings are of particular interest for cancer research and early detection of the disease. According to the researchers the innate immune system could serve to identify faster growing but not yet malignant cells - and thus represent a way to combat the disease at an early stage.


Further reading:
Stefanie Meyer, Marc Amoyel, Cora Bergantinos, Claire de la Cova, Claus Schertel, Konrad Basler, Laura Johnston, An ancient defense system operates in cell competition to eliminate unfit cells from developing tissues. Science. December 4, 2014. doi:10.1126/science.1258236

Contacts:
Claus Schertel
Institute of Molecular Biology
University of Zurich
E-Mail: claus.schertel@imls.uzh.ch
Tel. +41 44 635 31 92 / +41 77 460 38 47

Prof. Dr. Konrad Basler
Institute of Molecular Biology
University of Zurich
Tel. +41 44 635 31 10
Email: konrad.basler@imls.uzh.ch

Stefanie Meyer
Institute of Molecular Biology
University of Zurich
Email: stefanie.meyer@imls.uzh.ch

Bettina Jakob
Media Relations
University of Zurich
Tel. +41 44 634 44 39
Email: bettina.jakob@kommunikation.uzh.ch


Weitere Informationen:

http://www.mediadesk.uzh.ch

Bettina Jakob | Universität Zürich

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>