Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hidden Nano Power Switch: Kiel researchers discover switching function in molecular wire

27.10.2017

The increasing miniaturisation in electronics will result in components which consist of only a few molecules, or even just one molecule. An international research team from Kiel University (CAU) and the Donostia International Physics Center in San Sebastián/Spain, has developed a molecule integrating a wire with a diameter of only a single atom. They discovered that the current can be regulated via this molecular wire. It works like a nano power switch, and makes the use of molecular wires in electronic components at the nano scale feasible. The research team’s findings appeared in the scientific journal Physical Review Letters.

The wire produced by the scientists from Kiel and San Sebastián is just two atomic bonds long and one atom wide. "This is the simplest molecular wire imaginable, thinner and much shorter is not possible," explained the Kiel physicist Torben Jasper-Tönnies, first author of the publication.


How the wire molecule becomes a nano switch: the closer the tip of the scanning tunnelling microscope (yellow) gets to the nano wire (blue), the more the wire bends - and the current flow changes.

Copyright: Jasper-Tönnies


Torben Jasper-Tönnies placed a single atom at the tip of the scanning tunnelling microscope and was able to join a tiny wire with a diameter of just one atom to an electrical circuit.

Photo: Siekmann/CAU

In order to measure the current flowing through the nano wire, both ends must be connected to a metal electrode - like with larger circuits. But there are no metal clips which are small enough to create electrical contacts at the nano scale.

"Electrically contacting individual molecules in a nano circuit is a problem that has not yet been solved satisfactorily, and is widely discussed in the research community," explained Jasper-Tönnies, who is writing his doctoral thesis in the working group of Professor Richard Berndt.

In order to enable an electrical contact, the scientists developed a new wire, consisting of only a single molecule. "The special thing about our wire is that we can install it in a vertical position on a metal surface. This means that one of the two required contacts is already effectively built-in to the wire," explained Jasper-Tönnies.

To achieve this, the involved chemists used an approach from the Kiel Collaborative Research Centre (SFB) 677 “Function by Switching”. In the interdisciplinary research network, molecular platforms are among the areas of interest. The wire is attached to such a platform. It exhibits a high conductance, and can be easily attached to a metal surface like a suction cup - an electrical contact is realized.

For the second required contact, the research team used a scanning tunnelling microscope (STM). With a metal tip, it "feels" a sample, and creates an image of its surface on a scale down to a few nanometres. Individual atoms thus become visible. In their experiments, the Kiel researchers used a particularly fine metal tip for the STM, at the end of which was only a single atom.

In this way, they were able to create an electrical contact with the second end of the wire, close the circuit, and measure the current. "Through this very precise contact via just one atom, we obtained particularly good data. We can replicate these contacts, and the current values measured differ very little from wire to wire," said Jasper-Tönnies.

During their measurements, the researchers also found that quantum mechanical forces act between the metal tip of the STM and the nano wire. These can be used to bend the wire mechanically. If the wire is only slightly bent, the current is reduced. However, if there is a strong bend, it increases. "By bending the wire, we were able to switch the current on or off. Although our wire is so simple, it behaves in a very complex way - this surprised us," explained Jasper-Tönnies.

The scientists think that the unusual electrical conductance of the nano wire is caused by its molecular structure. This is supported by calculations performed by Dr. Aran Garcia-Lekue and Professor Thomas Frederiksen from San Sebastián. As a result of the quantum mechanical forces, the individual atoms of the wire form new chemical bonds with the atom at the tip of the STM probe. This changes the geometry of the molecule, and thereby its properties. “Small geometrical differences can actually have a huge effect. This is why it is important to be able to set the geometry of a molecule and measure it as accurately as possible - and we achieve this by the precise contact of the nano wire and via the STM images in atomic resolution," said Jasper-Tönnies.

The publication of the researchers from Kiel and San Sebastián was highly recommended by the editors of Physical Review Letters as their "Editors' suggestion".

Original publication
Conductance of a Freestanding Conjugated Molecular Wire, Torben Jasper-Tönnies, Aran Garcia-Lekue, Thomas Frederiksen, Sandra Ulrich, Rainer Herges, Richard Berndt. Phys. Rev. Lett. 119, 2017, 066801
https://doi.org/10.1103/PhysRevLett.119.066801

Photos are available to download:

http://www.uni-kiel.de/download/pm/2017/2017-330-1.jpg
Caption: Torben Jasper-Tönnies meticulously placed a single atom at the tip of the scanning tunnelling microscope at the Institute of Experimental and Applied Physics. The effort was worth it: the physicist was then able to join a tiny wire with a diameter of just one atom to an electrical circuit.
Photo: Siekmann/CAU

http://www.uni-kiel.de/download/pm/2017/2017-330-2.png
Caption: The top view shows: just one atom wide - less than a nanometre - is the wire (green), which is mounted vertically on a conductive platform (red). It can be easily attached to a metal surface (dark) like a suction cup - an electrical contact is realized.
Copyright: Jasper-Tönnies

http://www.uni-kiel.de/download/pm/2017/2017-330-3.png
Caption: This is how the wire molecule becomes a nano switch: the closer the tip of the scanning tunnelling microscope (yellow) gets to the nano wire (blue), the more the wire bends - and the current flow changes. This is due to quantum mechanical forces acting between the tip and the wire. They change the geometry of the molecule, and thereby its properties.
Copyright: Jasper-Tönnies

Contact:
Dipl.-Phys. Torben Jasper-Tönnies
Institute of Experimental and Applied Physics
Tel.: +49 (0)431/880-3834
E-mail: jasper-toennies@physik.uni-kiel.de

Kiel University
Press, Communication and Marketing, Dr Boris Pawlowski, Text/editing: Julia Siekmann
Postal address: D-24098 Kiel, Germany,
Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

The Collaborative Research Centre (SFB) 677 “Function by Switching” at Kiel University, has around 100 scientists from Chemistry, Physics, Materials Science, Pharmacy and Medicine working on a cross-disciplinary basis to develop switchable molecular machines which can be controlled by light, for example. The CRC has been financed by the German Research Foundation (DFG) since 2007. More information: http://www.sfb677.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>