Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The female nose always knows: Do women have more olfactory neurons?

06.11.2014

Individuals show great diversity in their ability to identify scents and odors. More importantly, males and females greatly differ in their perceptual evaluation of odors, with women outperforming men on many kinds of smell tests.

Sex differences in olfactory detection may play a role in differentiated social behaviors and may be connected to one's perception of smell, which is naturally linked to associated experiences and emotions. Thus, women's olfactory superiority has been suggested to be cognitive or emotional, rather than perceptual.


The olfactory bulb transmits information from the nose to the brain.

Credit: Roberto Lent

Previous studies investigating the biological roots of greater olfactory sensitivity in women have used imaging methods that allow gross measures of brain structures. The results of such studies have been controversial, leaving unanswered the question of whether differences in olfactory sensitivity have biological roots or whether they represent a mere by-product of social and cognitive differences between genders.

The isotropic fractionator, a fast and reliable technique previously developed by a group of researchers at Federal University of Rio de Janeiro, measures the absolute number of cells in a given brain structure such as the olfactory bulb, which is the first brain region to receive olfactory information captured by the nostrils.

Using this technique, a group of researchers led by Prof. Roberto Lent from the Institute of Biomedical Sciences at the Federal University of Rio de Janeiro and the National Institute of Translational Neuroscience, Ministry of Science and Technology in Brazil, has finally found biological evidence in the brains of men and women that may explain the olfactory difference between genders.

The group examined post-mortem brains from seven men and 11 women who were all over the age of 55 at the time of death. All individuals were neurologically healthy and none worked in professions requiring exceptional olfactory abilities, such as coffee-tasting or professional cooking. By calculating the number of cells in the olfactory bulbs of these individuals, the group (that also included researchers from the University of São Paulo, the University of California, San Francisco, and the Albert Einstein Hospital in São Paulo) discovered that women have on average 43% more cells than men in this brain structure. Counting neurons specifically, the difference reached almost 50% more in women than men.

The question remains whether this higher cell number accounts for the differences in olfactory sensitivity between sexes. "Generally speaking, says Prof. Lent, larger brains with larger numbers of neurons correlate with the functional complexity provided by these brains. Thus, it makes sense to think that more neurons in the female olfactory bulbs would provide women with higher olfactory sensitivity".

The fact that few cells are added to our brains throughout life suggests that women are already born with these extra cells. But why do women's brains have this pre-wired ability? What mechanisms are responsible for this higher number of cells in their olfactory bulbs? Some believe this olfactory ability is essential for reproductive behaviors such as pair bonding and kin recognition.

If this holds true, then superior olfactory ability is an essential trait that has been inherited and then maintained throughout evolution, an idea expressed by Romanian playwright Eugene Ionesco when he said "a nose that can see is worth two that sniff".

The research paper entitled Sexual dimorphism in the human olfactory bulb: females have more neurons and glial cells than males has been published on PLOS ONE and is available at http://dx.plos.org/10.1371/journal.pone.0111733

Roberto Lent | EurekAlert!

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>