Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The female nose always knows: Do women have more olfactory neurons?

06.11.2014

Individuals show great diversity in their ability to identify scents and odors. More importantly, males and females greatly differ in their perceptual evaluation of odors, with women outperforming men on many kinds of smell tests.

Sex differences in olfactory detection may play a role in differentiated social behaviors and may be connected to one's perception of smell, which is naturally linked to associated experiences and emotions. Thus, women's olfactory superiority has been suggested to be cognitive or emotional, rather than perceptual.


The olfactory bulb transmits information from the nose to the brain.

Credit: Roberto Lent

Previous studies investigating the biological roots of greater olfactory sensitivity in women have used imaging methods that allow gross measures of brain structures. The results of such studies have been controversial, leaving unanswered the question of whether differences in olfactory sensitivity have biological roots or whether they represent a mere by-product of social and cognitive differences between genders.

The isotropic fractionator, a fast and reliable technique previously developed by a group of researchers at Federal University of Rio de Janeiro, measures the absolute number of cells in a given brain structure such as the olfactory bulb, which is the first brain region to receive olfactory information captured by the nostrils.

Using this technique, a group of researchers led by Prof. Roberto Lent from the Institute of Biomedical Sciences at the Federal University of Rio de Janeiro and the National Institute of Translational Neuroscience, Ministry of Science and Technology in Brazil, has finally found biological evidence in the brains of men and women that may explain the olfactory difference between genders.

The group examined post-mortem brains from seven men and 11 women who were all over the age of 55 at the time of death. All individuals were neurologically healthy and none worked in professions requiring exceptional olfactory abilities, such as coffee-tasting or professional cooking. By calculating the number of cells in the olfactory bulbs of these individuals, the group (that also included researchers from the University of São Paulo, the University of California, San Francisco, and the Albert Einstein Hospital in São Paulo) discovered that women have on average 43% more cells than men in this brain structure. Counting neurons specifically, the difference reached almost 50% more in women than men.

The question remains whether this higher cell number accounts for the differences in olfactory sensitivity between sexes. "Generally speaking, says Prof. Lent, larger brains with larger numbers of neurons correlate with the functional complexity provided by these brains. Thus, it makes sense to think that more neurons in the female olfactory bulbs would provide women with higher olfactory sensitivity".

The fact that few cells are added to our brains throughout life suggests that women are already born with these extra cells. But why do women's brains have this pre-wired ability? What mechanisms are responsible for this higher number of cells in their olfactory bulbs? Some believe this olfactory ability is essential for reproductive behaviors such as pair bonding and kin recognition.

If this holds true, then superior olfactory ability is an essential trait that has been inherited and then maintained throughout evolution, an idea expressed by Romanian playwright Eugene Ionesco when he said "a nose that can see is worth two that sniff".

The research paper entitled Sexual dimorphism in the human olfactory bulb: females have more neurons and glial cells than males has been published on PLOS ONE and is available at http://dx.plos.org/10.1371/journal.pone.0111733

Roberto Lent | EurekAlert!

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>