Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The female nose always knows: Do women have more olfactory neurons?

06.11.2014

Individuals show great diversity in their ability to identify scents and odors. More importantly, males and females greatly differ in their perceptual evaluation of odors, with women outperforming men on many kinds of smell tests.

Sex differences in olfactory detection may play a role in differentiated social behaviors and may be connected to one's perception of smell, which is naturally linked to associated experiences and emotions. Thus, women's olfactory superiority has been suggested to be cognitive or emotional, rather than perceptual.


The olfactory bulb transmits information from the nose to the brain.

Credit: Roberto Lent

Previous studies investigating the biological roots of greater olfactory sensitivity in women have used imaging methods that allow gross measures of brain structures. The results of such studies have been controversial, leaving unanswered the question of whether differences in olfactory sensitivity have biological roots or whether they represent a mere by-product of social and cognitive differences between genders.

The isotropic fractionator, a fast and reliable technique previously developed by a group of researchers at Federal University of Rio de Janeiro, measures the absolute number of cells in a given brain structure such as the olfactory bulb, which is the first brain region to receive olfactory information captured by the nostrils.

Using this technique, a group of researchers led by Prof. Roberto Lent from the Institute of Biomedical Sciences at the Federal University of Rio de Janeiro and the National Institute of Translational Neuroscience, Ministry of Science and Technology in Brazil, has finally found biological evidence in the brains of men and women that may explain the olfactory difference between genders.

The group examined post-mortem brains from seven men and 11 women who were all over the age of 55 at the time of death. All individuals were neurologically healthy and none worked in professions requiring exceptional olfactory abilities, such as coffee-tasting or professional cooking. By calculating the number of cells in the olfactory bulbs of these individuals, the group (that also included researchers from the University of São Paulo, the University of California, San Francisco, and the Albert Einstein Hospital in São Paulo) discovered that women have on average 43% more cells than men in this brain structure. Counting neurons specifically, the difference reached almost 50% more in women than men.

The question remains whether this higher cell number accounts for the differences in olfactory sensitivity between sexes. "Generally speaking, says Prof. Lent, larger brains with larger numbers of neurons correlate with the functional complexity provided by these brains. Thus, it makes sense to think that more neurons in the female olfactory bulbs would provide women with higher olfactory sensitivity".

The fact that few cells are added to our brains throughout life suggests that women are already born with these extra cells. But why do women's brains have this pre-wired ability? What mechanisms are responsible for this higher number of cells in their olfactory bulbs? Some believe this olfactory ability is essential for reproductive behaviors such as pair bonding and kin recognition.

If this holds true, then superior olfactory ability is an essential trait that has been inherited and then maintained throughout evolution, an idea expressed by Romanian playwright Eugene Ionesco when he said "a nose that can see is worth two that sniff".

The research paper entitled Sexual dimorphism in the human olfactory bulb: females have more neurons and glial cells than males has been published on PLOS ONE and is available at http://dx.plos.org/10.1371/journal.pone.0111733

Roberto Lent | EurekAlert!

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>