Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The effect of bacterial ice nuclei

25.04.2016

Bacteria induce the formation of ice crystals by changing the order and dynamics of surface water molecules.

The freezing point of water is anything but a clear subject. Small droplets of the purest water only freeze at minus 37 degrees Celsius. Crystalization nuclei such as bacteria with ice-forming proteins on their surface are required for ice crystals to develop at just under 0 degrees Celsius.


Ice crystals: Max Planck researchers discovered that certain bacteria can affect the ordering and the dynamics of water molecules in water droplets.

Graphics and collage: MPI for Polymer Research, photo: R. Eckl

Researchers at the Max Planck Institutes for Chemistry and for Polymer Research have now elucidated the molecular mechanism how proteins congeal water molecules. According to the researchers, the proteins create ordered structures in the water and remove heat from the water.

The findings not only help to facilitate a better understanding of the conditions under which frost damage occurs on plants. Since the bacteria are also airborne in the atmosphere, where they promote the formation of ice crystals, they also play a role in formation of clouds and precipitation – a major factor of uncertainty in weather and climate forecasts.

A water droplet never freezes at 0 degrees Celsius. Water forms ice only at the temperature which is commonly known as freezing point, if it is in contact with large surfaces with many and large ice forming parts – for example in a vessel or a sea. It has been known for some time that ice formation in water droplets is promoted by bacteria by specific protein molecules at their surface. Until recently, however, the molecular mechanisms responsible for this phenomenon have been unclear.

Max Planck researchers have now unraveled the interactions between water and protein molecules at the bacterial surface. A team around Tobias Weidner who heads a research team at the Max Planck Institute for Polymer Research and Janine Fröhlich-Nowoisky, head of a research group at the Max Planck Institute for Chemistry, shows how ice-active bacteria influence the order and dynamics of water molecules.

Together with American colleagues, the Mainz researchers have reported in the latest edition of the scientific journal Science Advances that the interactions of specific amino acid sequences of the protein molecules generate water domains with increased order and stronger hydrogen bonds. Additionally, the proteins remove thermal energy from the water into the bacteria. As a result, water molecules can aggregate into ice crystals more easily.

Ice-active bacteria are of great importance to scientists from a variety of different perspectives. On the one hand they can cause frost damage on the surface of plants. On the other hand when carried by wind into the atmosphere, they can trigger as crystalization and condensation nuclei the formation of snow and rain and thus influence the hydrological cycle. The spread of ice-active bacteria and other biological aerosol particles in the atmosphere and their impact on the formation of clouds and precipitation is a much-debated topic in current climate and Earth system research. Findings about the ice forming effect of bacteria can help to better understand their role in the climate system.

To understand how bacterial proteins stimulate the formation of ice crystals, the researchers concentrated on the ice-active bacterium Pseudomonas syringae. This bacterium can trigger the formation of ice in water droplets beginning at -2 degrees Celsius, while mineral dust usually triggers the freezing process only below -15 degrees Celsius. Due to their high ice nucleating ability, devitalized Pseudomonas syringae are used for the production of artificial snow in the commercial product “Snomax”.

The scientists utilized the so-called sum frequency generation spectroscopy for their studies. By use of laser beams this technology allows the investigation of water molecules at the bacterial or protein surface.

Thanks to the new findings it appears possible to imitate the bacterial ice nucleating mechanism and make it usable for other applications. “For the future it is conceivable to produce artificial nano-structured surfaces and particles to selectively influence and control the formation of ice,” says Tobias Weidner.

Encouraged by the positive results, the two Max Planck research groups want to extend their cooperation. “We plan to examine the ice-nucleating proteins in isolated form. Currently, we are still analyzing whole bacterial cells and cell fragments. Additionally, we want to extend the analyses to fungal ice nuclei,” explains Janine Fröhlich-Nowoisky, whose working group specializes in the characterization of biological ice nuclei and has an extensive collection of both ice-active bacteria and cultures from ice-active fungi available.

Presse- und Öffentlichkeitsarbeit | Max-Planck-Institut für Polymerforschung

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>