Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The dandelion uses latex to protect its roots against insect feeding

06.01.2016

Dandelions are troublesome weeds that are detested by most gardeners. Yet dandelions also have many insect enemies in nature. However, they are able to protect themselves with their latex, a milky, bitter-tasting sap. Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, and the University of Bern, Switzerland, have now demonstrated that a single compound in the latex protects dandelion roots against voracious cockchafer larvae. Thus, latex plays a crucial role in dandelion defense against root feeders. (PLOS Biology, January 2016, Open Access)

Dandelions are survival experts


The larva of a cockchafer Melolontha melolontha attacks the roots of a dandelion.

Meret Huber / Max Planck Institute for Chemical Ecology, PLOS Biology


Meret Huber studies latex metabolites in dandelion and their role in root herbivore defense

Anna Schroll

Dandelions (Taraxacum officinale agg.) are well-known plants of European and Asian origin that have spread around most of the temperate world. Children love their yellow flowers and even more the fluffy seed heads with their parachute-like seeds that can travel long distances by wind. Young plants grow with such force that they can penetrate even asphalt. Therefore dandelions have become a symbol for survival in modern cities.

In fields and meadows, the plant must fend off many herbivores, among them cockchafer larvae. The common cockchafer (Melolontha melolontha) spends the first three years of its life cycle underground as a grub feeding on the roots of different plants. One of its favorite foods is dandelion roots.

Like many other plants, dandelions produce secondary metabolites to protect themselves against herbivores. Some of these defenses, such as terpenes and phenols, are of pharmaceutical interest and are considered promising anti-cancer agents. The most important dandelion metabolites are bitter substances which are especially found in a milky sap called latex, a substance found in almost ten percent of all flowering plants.

Why dandelion latex is bitter

Scientists from the Department of Biochemistry and their colleagues from the University of Bern have now taken a closer look at dandelion latex. The scientists found the highest concentrations of the bitter latex in the roots of dandelions. Dandelions need to protect their roots very fiercely because these are the main storage organs for nutrients which fuel growth early in the spring.

One single defensive chemical protects the plant

The scientists tested first whether latex compounds produced by dandelion roots were negatively associated with the development of cockchafer larvae. They also wanted to know whether these compounds had a positive effect on the fitness and reproductive success of dandelions under Melolontha melolontha attack. An analysis of the components of dandelion latex revealed that one single substance negatively influenced the growth of cockchafer larvae. This substance was identified as the sesquiterpene lactone, taraxinic acid β-D-glucopyranosyl ester (TA-G). When the purified substance was added to an artificial larval diet in ecologically relevant amounts, the grubs fed considerably less.

The researchers succeeded in identifying the enzyme and gene responsible for the formation of a precursor of TA-G biosynthesis, and so were able to engineer plants with lower TA-G. Roots of engineered plants with less TA-G were considerably more attacked by cockchafer larvae. The chemical composition of latex varies between different natural dandelion lines. A common garden experiment with different lines revealed that plants which produce higher amounts of TA-G maintained a higher vegetative and reproductive fitness when they were attached by cockchafer larvae. “For me, the biggest surprise was to learn that a single compound is really responsible for a defensive function,” says Jonathan Gershenzon, the head of the Department of Biochemistry at the Max Planck Institute in Jena. “The latex of dandelions and other plants consists of such a mixture of substances that it didn’t seem necessarily true that one chemical by itself had such a protective role against our study insect.”

The combination of approaches as a key to success

“It was clearly the combination of techniques that was crucial for the success of our studies,” explains Matthias Erb from the University of Bern who led the study. “Each approach has its weaknesses that were balanced by the strengths of the others. We think that this type of interdisciplinary research can be very powerful to understand biological systems.”

The scientists are now planning further experiments study the co-evolution of dandelions and their root herbivores in order of find out whether the presence of root-feeding insects has shaped the plant defensive chemistry in the course of evolution and whether the insects show adaptations to dandelion defenses. [AO]

Original Publication:
Huber, M., Epping, J., Schulze Gronover, C., Fricke, J., Aziz, Z., Brillatz, T., Swyers, M., Köllner, T. G., Vogel, H., Hammerbacher, A., Triebwasser-Freese, D., Robert, C. A. M., Verhoeven, K., Preite, V. Gershenzon, J., Erb, M. (2016). A latex metabolite benefits plant fitness under root herbivore attack. PLOS Biology, DOI: 10.1371/journal.pbio.1002332. Open Access
http://dx.doi.org/10.1371/journal.pbio.1002332

Further Information:
Meret Huber, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1329, mhuber@ice.mpg.de
Matthias Erb, University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland, +41 31 631 8668, matthias.erb@ips.unibe.ch
Jonathan Gershenzon, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1301, gershenzon@ice.mpg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie
Further information:
http://www.ice.mpg.de/

Further reports about: Chemical Ecology Melolontha melolontha dandelion herbivores insect larvae latex

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>