Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The dandelion uses latex to protect its roots against insect feeding

06.01.2016

Dandelions are troublesome weeds that are detested by most gardeners. Yet dandelions also have many insect enemies in nature. However, they are able to protect themselves with their latex, a milky, bitter-tasting sap. Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, and the University of Bern, Switzerland, have now demonstrated that a single compound in the latex protects dandelion roots against voracious cockchafer larvae. Thus, latex plays a crucial role in dandelion defense against root feeders. (PLOS Biology, January 2016, Open Access)

Dandelions are survival experts


The larva of a cockchafer Melolontha melolontha attacks the roots of a dandelion.

Meret Huber / Max Planck Institute for Chemical Ecology, PLOS Biology


Meret Huber studies latex metabolites in dandelion and their role in root herbivore defense

Anna Schroll

Dandelions (Taraxacum officinale agg.) are well-known plants of European and Asian origin that have spread around most of the temperate world. Children love their yellow flowers and even more the fluffy seed heads with their parachute-like seeds that can travel long distances by wind. Young plants grow with such force that they can penetrate even asphalt. Therefore dandelions have become a symbol for survival in modern cities.

In fields and meadows, the plant must fend off many herbivores, among them cockchafer larvae. The common cockchafer (Melolontha melolontha) spends the first three years of its life cycle underground as a grub feeding on the roots of different plants. One of its favorite foods is dandelion roots.

Like many other plants, dandelions produce secondary metabolites to protect themselves against herbivores. Some of these defenses, such as terpenes and phenols, are of pharmaceutical interest and are considered promising anti-cancer agents. The most important dandelion metabolites are bitter substances which are especially found in a milky sap called latex, a substance found in almost ten percent of all flowering plants.

Why dandelion latex is bitter

Scientists from the Department of Biochemistry and their colleagues from the University of Bern have now taken a closer look at dandelion latex. The scientists found the highest concentrations of the bitter latex in the roots of dandelions. Dandelions need to protect their roots very fiercely because these are the main storage organs for nutrients which fuel growth early in the spring.

One single defensive chemical protects the plant

The scientists tested first whether latex compounds produced by dandelion roots were negatively associated with the development of cockchafer larvae. They also wanted to know whether these compounds had a positive effect on the fitness and reproductive success of dandelions under Melolontha melolontha attack. An analysis of the components of dandelion latex revealed that one single substance negatively influenced the growth of cockchafer larvae. This substance was identified as the sesquiterpene lactone, taraxinic acid β-D-glucopyranosyl ester (TA-G). When the purified substance was added to an artificial larval diet in ecologically relevant amounts, the grubs fed considerably less.

The researchers succeeded in identifying the enzyme and gene responsible for the formation of a precursor of TA-G biosynthesis, and so were able to engineer plants with lower TA-G. Roots of engineered plants with less TA-G were considerably more attacked by cockchafer larvae. The chemical composition of latex varies between different natural dandelion lines. A common garden experiment with different lines revealed that plants which produce higher amounts of TA-G maintained a higher vegetative and reproductive fitness when they were attached by cockchafer larvae. “For me, the biggest surprise was to learn that a single compound is really responsible for a defensive function,” says Jonathan Gershenzon, the head of the Department of Biochemistry at the Max Planck Institute in Jena. “The latex of dandelions and other plants consists of such a mixture of substances that it didn’t seem necessarily true that one chemical by itself had such a protective role against our study insect.”

The combination of approaches as a key to success

“It was clearly the combination of techniques that was crucial for the success of our studies,” explains Matthias Erb from the University of Bern who led the study. “Each approach has its weaknesses that were balanced by the strengths of the others. We think that this type of interdisciplinary research can be very powerful to understand biological systems.”

The scientists are now planning further experiments study the co-evolution of dandelions and their root herbivores in order of find out whether the presence of root-feeding insects has shaped the plant defensive chemistry in the course of evolution and whether the insects show adaptations to dandelion defenses. [AO]

Original Publication:
Huber, M., Epping, J., Schulze Gronover, C., Fricke, J., Aziz, Z., Brillatz, T., Swyers, M., Köllner, T. G., Vogel, H., Hammerbacher, A., Triebwasser-Freese, D., Robert, C. A. M., Verhoeven, K., Preite, V. Gershenzon, J., Erb, M. (2016). A latex metabolite benefits plant fitness under root herbivore attack. PLOS Biology, DOI: 10.1371/journal.pbio.1002332. Open Access
http://dx.doi.org/10.1371/journal.pbio.1002332

Further Information:
Meret Huber, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1329, mhuber@ice.mpg.de
Matthias Erb, University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland, +41 31 631 8668, matthias.erb@ips.unibe.ch
Jonathan Gershenzon, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1301, gershenzon@ice.mpg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie
Further information:
http://www.ice.mpg.de/

Further reports about: Chemical Ecology Melolontha melolontha dandelion herbivores insect larvae latex

More articles from Life Sciences:

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht eTRANSAFE – collaborative research project aimed at improving safety in drug development process
26.09.2017 | Fraunhofer-Gesellschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>