Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain's 'inner GPS' gets dismantled

11.11.2014

Imagine being able to recognize your car as your own but never being able to remember where you parked it.

Researchers at University of California, San Diego School of Medicine have induced this all-too-common human experience - or a close version of it - permanently in rats and from what is observed perhaps derive clues about why strokes and Alzheimer's disease can destroy a person's sense of direction.


The rat with the MEC lesion (right) shows a poor ability to remember the location of the resting platform (red dot).

Credit: UC San Diego School of Medicine

The findings are published online in the current issue of Cell Reports.

Grid cells and other specialized nerve cells in the brain, known as "place cells," comprise the brain's inner GPS, the discovery of which earned British-American and Norwegian scientists this year's Nobel Prize for medicine.

In research that builds upon the Nobel Prize-winning science, UC San Diego scientists have developed a micro-surgical procedure that makes it possible to remove the area of the rat's brain that contains grid cells and show what happens to this hard-wired navigational system when these grid cells are wiped out.

One effect, not surprisingly, is that the rats become very poor at tasks requiring internal map-making skills, such as remembering the location of a resting platform in a water maze test.

"Their loss of spatial memory formation was not a surprise," said senior co-author Robert Clark, PhD, a professor of psychiatry. "It's what would be expected based on the physiological characteristics of that area of the brain," which is known as the entorhinal cortex and is the first brain region to break down in Alzheimer's disease.

But the rats retained a host of other memory and navigation-related skills that scientists had previously speculated would be destroyed without grid cells.

"The surprise is the discovery of the type of memory formation that was not disrupted by the removal of the grid cell area," Clark said.

Specifically, UC San Diego scientists were able to show that even without grid cells rats could still mark spatial changes in their environment. They could, for example, notice when an object in a familiar environment was moved a few inches and they could recognize objects, such as a coffee mug or flower vase, and remember later that they had seen these objects before.

Electrical recordings of signals transmitted from the hippocampus suggested that the animals had developed place cells - cells that are believed to convey a sense of location - and that these cells were firing when an animal passed through a familiar place.

"Their place cells were less precise and less stable, but they were present and active," said Clark, who is also a research scientist at Veterans Affairs San Diego Healthcare System. "That was a surprise because we had removed the spatially modulated grid-cell input to these neurons."

The axons of grid cells project into the hippocampus and it has been assumed that without this relay of information from the entorhinal cortex to the hippocampus, place cells would be unable to develop. "This is not the case," he said.

"Our work shows a crisp division of labor within memory circuits of the brain," he said. "Removing the grid-cell network removes memory for places but leaves completely intact a whole host of other important memory abilities like recognition memory and memory of fearful events."

Co-authors include Jena Hales, Magdalene Schlesiger, Jill Leutgeb and Stefan Leutgeb, UC San Diego; and Larry Squire, Veterans Affairs San Diego Healthcare System and UC San Diego

This work was supported, in part, by the National Institute of Neurological Disorders and Stroke (1R01NS086947-01), National Institute of Mental Health (MH24600 and MH020002-13) and the Department of Veterans Affairs.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu/

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>