Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen-Luxembourg scientific team conducts unprecedented analysis of microbial ecosystem

27.11.2014

Research published in Nature Communications has implications for protecting environment, energy recovery and human health

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological wastewater treatment plant that has broad implications for protecting the environment, energy recovery and human health.

The study, published Nov. 26 in the scientific journal Nature Communications (DOI: 10.1038/ncomm6603), describes in unprecedented detail the complex relationships within a model ecosystem.

The study focused on biofuel molecules, lipids, which are naturally accumulated by microbial mats and floated on top of wastewater. This is "free energy" as lipids can be converted into diesel fuel.

"Bacterial communities are everywhere, and understanding how they interact is critical to industry, agriculture, the environment and human health," said Dr. Paul Keim, Director of TGen's Pathogen Genomics Division, noting both the academic achievement and the applied implications of these research efforts.

"Basic principles of microbial community function can be established in one setting and then used to generate hypotheses and models applicable to all," said Dr. Keim, who also is a Regents Professor of Microbiology at Northern Arizona University (NAU).

The study's findings corroborate and unify various ecological concepts that have been primarily formulated based on observations in macrobiotic systems such as forests, rivers and oceans, which cannot be experimentally investigated in depth because of the sheer size of these biotopes.

For their analyses of the treatment plant ecosystem, the researchers employed Systems Biology methods. Wastewater destined for treatment comprises energy-rich substrates including fats, proteins, carbohydrates and many other substances that serve as nutrients for the resident bacteria. Every wastewater treatment plant is therefore a complex ecosystem. Countless bacterial species adapt to the living conditions in the water, compete for resources and each find a niche in which they can best survive.

"The techniques developed at LCSB allow us now to unravel these processes very precisely at the molecular level," says Dr. Emilie Muller of LCSB and the study's first author.

The basis for this are the so-called "omics" -- genomics, transcriptomics, proteomics and metabolomics -- combined with new bioinformatic methods for integrated data analysis.

"With these, we can determine from samples which organisms are living in the treatment plant, and what their population sizes, genetic make-up, activities and material turnovers are like. Therefore, there is no longer any need to study bacteria separately in pure cultures," Muller said. "Based on this, we can ultimately model the material flows in the 'treatment plant' ecosystem and describe, for example, which bacterial species will use and consume which substrate and to what degree."

The TGen-LCSB team wants to go further than simply modeling the wastewater treatment plant ecology. Their study aimed to understand what factors determine the species composition and accordingly the balance in the ecosystem.

One species of bacteria grabbed the researchers' attention: Microthrix parvicella, whose genome sequence they first decrypted two years ago. This bacterium can absorb and store an especially large amount of lipids. In winter, up to 50 percent of all bacteria on the surface of treatment tanks belong to this species. This is rather astonishing, given that the amount of lipids in the wastewater is rather low in winter, and Microthrix actually has unfavorable living conditions during that season.

The study found that Microthrix possesses 28 copies of the gene that is chiefly responsible for lipid uptake. The amplification of this gene illustrates how important lipid accumulation is for this organism and its associated community.

"Microthrix is what ecologists call a generalist. The organism can adapt to very many living conditions and thereby dominate the highly fluctuating wastewater treatment plant ecosystem," said Dr. Paul Wilmes, head of the LCSB group "Ecosystems Biology" and the study's senior author.

This is helped, among other things, by the 28 genes for lipid uptake, Wilmes said: "Each copy of the gene is a little different from the others. If the living conditions change, say when the temperature drops or the lipid composition changes, then a different lipid uptake gene adapted to that condition sets in. That way, Microthrix can survive in many different environments."

The study team's translational aim is to boost the activity of Microthrix to remove as many lipids from the wastewater as possible. The lipids from wastewater stored in the bacteria are a renewable energy source because they can be easily converted into biodiesel.

Dr. Lance Price, a TGen team member and study co-author, said such ecosystems research has important medical implications, as well: "The human microbiome is a similar community of microbes. It dominates many tissues and organ systems through microbiome metabolism, interaction with human cells, and its ability to protect us against pathogens. The systematic analysis of the waste water communities will lead to insights for human health as well as translational applications in sustainable energy."

About TGen

Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. TGen is focused on helping patients with cancer, neurological disorders and diabetes, through cutting edge translational research (the process of rapidly moving research towards patient benefit). TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities literally worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. For more information, visit: http://www.tgen.org

Steve Yozwiak | EurekAlert!

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>