Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas Tech Researcher Discovers New Salmonella Serotype

21.01.2015

Salmonella Lubbock will provide new avenues for research into the bacteria’s prevention.

Lubbock is known for many things. Some of them are reasons to celebrate, like being the home of Buddy Holly. Some portray the city in negative ways, like dust storms.

The latest honor to come Lubbock’s way may not sound good at first, but when realizing it’s a breakthrough in biological sciences, it will become something to brag about.

Marie Bugarel, a research assistant professor at Texas Tech University’s Department of Animal and Food Sciences in the College of Agricultural Sciences and Natural Resources, has discovered a new serotype of the salmonella bacteria. The new serotype was confirmed by the Pasteur Institute in Paris, the international reference center for salmonella.

Because convention calls for a new serotype to be named after the city in which it is discovered, this one will be called Salmonella Lubbock (officially Salmonella enterica subsp. enterica Lubbock).

“More important than the name, however, is that this discovery illustrates there is more that needs to be discovered about salmonella and how it interacts with cattle populations,” said Guy Loneragan, a professor of food safety and public health who, along with Kendra Nightingale, are Bugarel’s mentors at Texas Tech. “With this understanding will come awareness of how to intervene to break the ecological cycle and reduce salmonella in animals and in beef, pork and chicken products.”

Bugarel, who came to Texas Tech with an extensive background in salmonella research, has worked on developing new tools to detect salmonella, new approaches to distinguish serotypes and ways to understand salmonella’s biology.

Her work has led to a patent application that has been licensed to a high-tech biosciences research company. Her invention means it is now possible to simultaneously detect and distinguish specific strains of salmonella by targeting a specific combination of DNA. That will allow for early detection in food while also identifying whether or belongs to a highly pathogenic strain.

In her research for Salmonella Lubbock, the impetus was to reduce salmonella in food and improve public health. She focused on providing solutions to control salmonella in cattle population, which led to a better understanding of the biological makeup of salmonella itself, including its genetic makeup. Through this approach, Bugarel discovered the new strain never before described.

The long-held standard way of distinguishing one strain of salmonella from another is called serotyping and is based on the molecules on the surface of the bacterium. Each serotype has its own pattern of molecules, called antigens, and the collection of molecules provides a unique molecular appearance. These antigens interact with certain antibodies found in specifically prepared serum, thus providing the serotype. It is similar to how blood typing is performed.

“This discovery reinforces my feeling that the microbiological flora present in cattle in the United States harbors a singularity, which is an additional justification of the research we are doing in the International Center for Food Industry Excellence (ICFIE) laboratories at Texas Tech,” Bugarel said. “Additional research will be performed to better describe the characteristics of this atypical bacterial flora and, more specifically, of the Lubbock serotype.”

With this discovery, Loneragan believes between 20 and 30 percent of two current strains, Salmonella Montevideo and Salmonella Mbandaka, will be reclassified as Salmonella Lubbock. The algorithm used in serotyping has some stopping points, but Bugarel discovered a need to go a step further to get the correct strain name. Therefore some of those strains called Montevideo and Mbandaka are now Salmonella Lubbock.

Some of the strains of Salmonella Lubbock fall into the category of serotype patterns that are more broadly resistant to many families of antibiotics, furthering the need for more research on the subject. Human susceptibility to the Lubbock strains remains unknown.

“We will continue to develop methods to detect, identify and control the presence of pathogenic microorganisms in food products in order to improve food safety and public health,” Bugarel said.

“Kendra and I have been honored to serve as Marie’s mentors,” Loneragan said. “But now, the growth in Marie’s expertise means that she is becoming the mentor to us. Many students, and the citizens of the United States in general and Texas in particular, are benefitting from her commitment to research excellence at Texas Tech. We are very lucky to have her.”

Find Texas Tech news, experts and story ideas at Texas Tech Today Media Resources or follow us on Twitter.

CONTACT: Guy Loneragan, professor of food safety and public health, Department of Animal and Food Sciences, College of Agricultural Sciences and Natural Resources, Texas Tech University, (806) 834-1291 or guy.loneragan@ttu.edu.

George Watson | newswise
Further information:
http://www.ttu.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>