Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tapeworms: Genome Mapped

14.03.2013
For the first time, scientists have mapped the entire genome of four tapeworm species. Their publication in "Nature" magazine reveals new weak spots of the parasites – they seem to be susceptible to standard cancer drugs.

Tapeworms live in the intestines and absorb nutrients from their hosts without doing any major harm. Their larvae, in contrast, are much more dangerous. They can migrate to the liver, lung, brain or other organs and form cysts in these tissues which can grow to the size of a handball. These cysts can have severe consequences for the infected persons, such as blindness, epilepsy, liver failure and even death.


In this stage, the larva of a fox tapeworm enters the fox that has eaten an infected mouse. In the centre of the globular structure, we can see more clear-cut bends: This is the set of hooks the tapeworm uses to attach to the intestinal wall of the fox. (Photo: Klaus Brehm)


Fox tapeworm kept in the lab: The larval stages are cultivated in the lab. In the liver of the intermediate hosts they grow like a tumor. This system was developed at Würzburg University. It allows testing which drugs kill the parasite, among others. (Photo: Klaus Brehm)

Professor Klaus Brehm of the University of Würzburg estimates that several hundred million people worldwide are infected by tapeworms – especially in the tropics, and especially in regions where people live closely together with animals under poor hygienic conditions. According to Brehm, no therapy is presently available that reliably kills the dangerous tapeworm larvae.

Fascinating results in "Nature"

Against this background, an international research team has now presented fascinating new insights into tapeworms in the top science magazine "Nature". Besides scientists from England and Mexico, a team of the University of Würzburg has been a major contributor to the study: Klaus Brehm and his associates Ferenc Kiss and Uriel Kozial of the Institute for Hygiene and Microbiology.

The researchers have sequenced the genome of fox tapeworm, pork tapeworm, dog tapeworm and dwarf tapeworm for the first time. "The DNA sequences now help us find potential drug targets on which therapies can act", says Dr Matthew Berriman of the Sanger Institute in Hinxton near Cambridge (England). Normally, researchers identify new targets for drugs to combat diseases by comparing a pathogen's genome sequence with the human host's DNA to find differences between them. This time, however, researchers deliberately looked for similarities: They wanted to identify new targets for drugs which have already proved effective in other conditions.

Cancer drugs to fight tapeworms

A list of the most promising targets shows: Many are identical to targets on which cancer treatments take effect. The reason: "A tapeworm infection takes a course much like the growth of a tumour", Brehm explains. "The larvae of the fox tapeworm, for instance, metastasise and proliferate in the whole body." Additionally, their development is controlled by the same genes responsible for the growth of a cancer cell. The larvae are therefore probably susceptible to standard cancer treatments.

Proteins as possible targets

But the researchers uncovered even more weak spots of the parasites. In the course of evolution, tapeworms have lost the ability to synthesise the necessary fats and cholesterol that are crucial for larvae development. Instead, they scavenge from their hosts. They use proteins to bind the necessary fats. By attacking these proteins with certain drugs, researchers hope to "starve" the larvae.

Tests on cell cultures of tapeworms

But are the identified new targets really weak spots of the tapeworms? This is currently being studied at the University of Würzburg. Klaus Brehm and his team have done pioneering work here to develop methods to cultivate the cells of fox tapeworm in the laboratory. "This enables us to test the potential drugs and select the most effective ones for further studies."

Reason for failure discovered

The genome analysis has shown why treatment attempts so far have been unsuccessful. The drug Praziquantel, for instance, which blocks certain calcium channels, had been used to combat the tapeworm larvae. It reliably kills the tapeworm species living in the intestines, but is ineffective against larvae – because said channels hardly exist in the larvae, as has been discovered recently.

Fascination tapeworm

Klaus Brehm and his team at the University of Würzburg study other aspects of tapeworms which might be important for medical progress.

"The tapeworm larvae behave like perfect transplants", the Würzburg scientist explains. "They implant themselves in the liver, for example, where they grow over years without the immune system noticing". If scientists knew how this perfect camouflage against the immune system works, major advances could be achieved in organ transplantation. Because transplanted organs are frequently rejected by the recipient's immune system.

Brehm is also fascinated by another characteristic of the parasites: "A tapeworm is theoretically immortal". How is that possible? The tapeworms fertilise themselves in their final host's intestine and their eggs pass into the environment with the host's faeces. The eggs are eaten by the intermediate hosts, transform into larvae and end up in the final host again – an endless cycle. "We want to learn how that works", Brehm says. The genome analysis has already yielded one new finding for the Würzburg scientists: "Tapeworms have a very special stem cell system which we will continue to study now".

“The genomes of four tapeworm species reveal adaptations to parasitism”, Nature, March 13, 2013, DOI: 10.1038/nature12031

Contact

Prof. Dr. Klaus Brehm, Institut für Hygiene und Mikrobiologie, Universität Würzburg, phone +49(0)931) 31-46168, kbrehm@hygiene.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>