Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tapeworms: Genome Mapped

For the first time, scientists have mapped the entire genome of four tapeworm species. Their publication in "Nature" magazine reveals new weak spots of the parasites – they seem to be susceptible to standard cancer drugs.

Tapeworms live in the intestines and absorb nutrients from their hosts without doing any major harm. Their larvae, in contrast, are much more dangerous. They can migrate to the liver, lung, brain or other organs and form cysts in these tissues which can grow to the size of a handball. These cysts can have severe consequences for the infected persons, such as blindness, epilepsy, liver failure and even death.

In this stage, the larva of a fox tapeworm enters the fox that has eaten an infected mouse. In the centre of the globular structure, we can see more clear-cut bends: This is the set of hooks the tapeworm uses to attach to the intestinal wall of the fox. (Photo: Klaus Brehm)

Fox tapeworm kept in the lab: The larval stages are cultivated in the lab. In the liver of the intermediate hosts they grow like a tumor. This system was developed at Würzburg University. It allows testing which drugs kill the parasite, among others. (Photo: Klaus Brehm)

Professor Klaus Brehm of the University of Würzburg estimates that several hundred million people worldwide are infected by tapeworms – especially in the tropics, and especially in regions where people live closely together with animals under poor hygienic conditions. According to Brehm, no therapy is presently available that reliably kills the dangerous tapeworm larvae.

Fascinating results in "Nature"

Against this background, an international research team has now presented fascinating new insights into tapeworms in the top science magazine "Nature". Besides scientists from England and Mexico, a team of the University of Würzburg has been a major contributor to the study: Klaus Brehm and his associates Ferenc Kiss and Uriel Kozial of the Institute for Hygiene and Microbiology.

The researchers have sequenced the genome of fox tapeworm, pork tapeworm, dog tapeworm and dwarf tapeworm for the first time. "The DNA sequences now help us find potential drug targets on which therapies can act", says Dr Matthew Berriman of the Sanger Institute in Hinxton near Cambridge (England). Normally, researchers identify new targets for drugs to combat diseases by comparing a pathogen's genome sequence with the human host's DNA to find differences between them. This time, however, researchers deliberately looked for similarities: They wanted to identify new targets for drugs which have already proved effective in other conditions.

Cancer drugs to fight tapeworms

A list of the most promising targets shows: Many are identical to targets on which cancer treatments take effect. The reason: "A tapeworm infection takes a course much like the growth of a tumour", Brehm explains. "The larvae of the fox tapeworm, for instance, metastasise and proliferate in the whole body." Additionally, their development is controlled by the same genes responsible for the growth of a cancer cell. The larvae are therefore probably susceptible to standard cancer treatments.

Proteins as possible targets

But the researchers uncovered even more weak spots of the parasites. In the course of evolution, tapeworms have lost the ability to synthesise the necessary fats and cholesterol that are crucial for larvae development. Instead, they scavenge from their hosts. They use proteins to bind the necessary fats. By attacking these proteins with certain drugs, researchers hope to "starve" the larvae.

Tests on cell cultures of tapeworms

But are the identified new targets really weak spots of the tapeworms? This is currently being studied at the University of Würzburg. Klaus Brehm and his team have done pioneering work here to develop methods to cultivate the cells of fox tapeworm in the laboratory. "This enables us to test the potential drugs and select the most effective ones for further studies."

Reason for failure discovered

The genome analysis has shown why treatment attempts so far have been unsuccessful. The drug Praziquantel, for instance, which blocks certain calcium channels, had been used to combat the tapeworm larvae. It reliably kills the tapeworm species living in the intestines, but is ineffective against larvae – because said channels hardly exist in the larvae, as has been discovered recently.

Fascination tapeworm

Klaus Brehm and his team at the University of Würzburg study other aspects of tapeworms which might be important for medical progress.

"The tapeworm larvae behave like perfect transplants", the Würzburg scientist explains. "They implant themselves in the liver, for example, where they grow over years without the immune system noticing". If scientists knew how this perfect camouflage against the immune system works, major advances could be achieved in organ transplantation. Because transplanted organs are frequently rejected by the recipient's immune system.

Brehm is also fascinated by another characteristic of the parasites: "A tapeworm is theoretically immortal". How is that possible? The tapeworms fertilise themselves in their final host's intestine and their eggs pass into the environment with the host's faeces. The eggs are eaten by the intermediate hosts, transform into larvae and end up in the final host again – an endless cycle. "We want to learn how that works", Brehm says. The genome analysis has already yielded one new finding for the Würzburg scientists: "Tapeworms have a very special stem cell system which we will continue to study now".

“The genomes of four tapeworm species reveal adaptations to parasitism”, Nature, March 13, 2013, DOI: 10.1038/nature12031


Prof. Dr. Klaus Brehm, Institut für Hygiene und Mikrobiologie, Universität Würzburg, phone +49(0)931) 31-46168,

Robert Emmerich | Uni Würzburg
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>