Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailor-made diamond for the continuous photocatalysis allowing CO₂ conversion

19.09.2016

Fraunhofer ICT-IMM is coordinating a national research cooperation dealing with the development of a microreactor system for the environmentally friendly utilization of CO₂ by means of sunlight.

Carbon dioxide (CO₂), methane and oxides of nitrogen – all of them greenhouse gases being in the line of fire when searching for the contributors to global warming. With more than three-quarters CO₂ represents the most significant part of the emission.


Although the carbon cycle is almost closed when using bio mass for energy generation, the utilization of generated CO₂ is a highly topical sociopolitical question. In case of a successful utilization, especially when applying alternative sources of energy such as wind energy, hydrodynamic power or solar energy, the eco-balance can sustainably be improved.

Nature as paradigm

In the course of the project CarbonCat important findings are expected to properly address this question. Doing so, high-power LEDs will be used in combination with the targeted conversion of CO₂ relying on a novel, predominantly carbon-based catalyst system. This catalyst system is supposed to be applied in a micro structured reaction environment.

At long sight the consortium, made up of the Fraunhofer ICT-IMM, the Julius-Maximilians-Universität Würzburg and the company Sahlmann Photochemical Solutions, technologically aims at coming as close as possible to nature inspired photosynthesis while exclusively using sunlight.

“This pioneering project allows us to recreate the natural photosynthesis process in a technical system. Instead of plant cells with their photosynthetically active chloroplasts we will use a newly developed micro reactor containing the diamond photocatalyst as photoactive center. The special construction of the micro reactor allows a continuous mixing of CO₂ and water under radiation with visible light”, explains Thomas Rehm, Senior Scientist at Fraunhofer ICT-IMM and coordinator of the research project.

Innovative catalyst system put in the right light

The project CarbonCat is supposed to prove that it is possible to convert CO₂ into valuable chemical C1 components such as methanol under near-natural conditions. For Anke Krüger, professor of Organic Chemistry at Julius-Maximilians-Universität Würzburg this means that “besides the technological part of the work the chemical optimization of diamond as a photocatalyst will be playing a key role. The selective functionalization of diamond surfaces with complex organic compounds is anything but simple, especially with respect to the long-term stability when being used in a continuous process as we intend to apply in the micro reactor.”

In addition to the reactor technology and the catalytically active surfaces the selection and the adequate mixing of the required wavelengths as well as the arrangement of the LEDs are of vital importance. “The interaction between the light source and the other system components deserves the greatest attention. This is as relevant for the photocatalytic process as for the overall efficiency of the reactor”, predicts Benjamin Sahlmann, working as a freelance chemist under the name of Sahlmann Photochemical Solutions.

“With the knowledge gained from CarbonCat we hope to be able to contribute to minimizing the environmental impact resulting from existing CO₂ emissions not too far in the future”, concludes Thomas Rehm.

The national joint research project CarbonCat is funded by the Federal Ministry of Education and Research under the support measure “CO₂ Plus”. The project partners will receive a funding of 1.34 million € for a period of three years.

Contribution of the project Partners

Based on its expertise in the development and exploration of micro structured reactors Fraunhofer ICT-IMM will realize a continuously operating reactor plant whose core will be the novel diamond photocatalyst. The physical adaptation of the diamond material applied in the micro reactor as well as the detailed investigation of the photocatalytic process in continuous operation mode also is part of ICT-IMM’s tasks.

Professor Krüger’s research group at the Julius-Maximilians-Universität Würzburg is dealing with the fabrication, characterization and application of nano scale carbon-based materials, especially diamond, for more than 10 years. CarbonCat will make use of the methods to establish an exceptionally stable link of functional molecules at diamond surfaces which have been developed by the research group. These methods will help to optimize the diamond material for its use as photocatalyst in the micro reactor.

Sahlmann Photochemical Solutions will develop the light sources required for the photocatalysis in the reactor system within the CarbonCat project. The tailor-made fabrication of the required light sources, their spectral measurement as well as their evaluation to ensure safety in the workplace is part of the tasks.

Dr. Stefan Kiesewalter | Fraunhofer ICT-IMM
Further information:
http://www.imm.fraunhofer.de

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>