Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailor-made diamond for the continuous photocatalysis allowing CO₂ conversion

19.09.2016

Fraunhofer ICT-IMM is coordinating a national research cooperation dealing with the development of a microreactor system for the environmentally friendly utilization of CO₂ by means of sunlight.

Carbon dioxide (CO₂), methane and oxides of nitrogen – all of them greenhouse gases being in the line of fire when searching for the contributors to global warming. With more than three-quarters CO₂ represents the most significant part of the emission.


Although the carbon cycle is almost closed when using bio mass for energy generation, the utilization of generated CO₂ is a highly topical sociopolitical question. In case of a successful utilization, especially when applying alternative sources of energy such as wind energy, hydrodynamic power or solar energy, the eco-balance can sustainably be improved.

Nature as paradigm

In the course of the project CarbonCat important findings are expected to properly address this question. Doing so, high-power LEDs will be used in combination with the targeted conversion of CO₂ relying on a novel, predominantly carbon-based catalyst system. This catalyst system is supposed to be applied in a micro structured reaction environment.

At long sight the consortium, made up of the Fraunhofer ICT-IMM, the Julius-Maximilians-Universität Würzburg and the company Sahlmann Photochemical Solutions, technologically aims at coming as close as possible to nature inspired photosynthesis while exclusively using sunlight.

“This pioneering project allows us to recreate the natural photosynthesis process in a technical system. Instead of plant cells with their photosynthetically active chloroplasts we will use a newly developed micro reactor containing the diamond photocatalyst as photoactive center. The special construction of the micro reactor allows a continuous mixing of CO₂ and water under radiation with visible light”, explains Thomas Rehm, Senior Scientist at Fraunhofer ICT-IMM and coordinator of the research project.

Innovative catalyst system put in the right light

The project CarbonCat is supposed to prove that it is possible to convert CO₂ into valuable chemical C1 components such as methanol under near-natural conditions. For Anke Krüger, professor of Organic Chemistry at Julius-Maximilians-Universität Würzburg this means that “besides the technological part of the work the chemical optimization of diamond as a photocatalyst will be playing a key role. The selective functionalization of diamond surfaces with complex organic compounds is anything but simple, especially with respect to the long-term stability when being used in a continuous process as we intend to apply in the micro reactor.”

In addition to the reactor technology and the catalytically active surfaces the selection and the adequate mixing of the required wavelengths as well as the arrangement of the LEDs are of vital importance. “The interaction between the light source and the other system components deserves the greatest attention. This is as relevant for the photocatalytic process as for the overall efficiency of the reactor”, predicts Benjamin Sahlmann, working as a freelance chemist under the name of Sahlmann Photochemical Solutions.

“With the knowledge gained from CarbonCat we hope to be able to contribute to minimizing the environmental impact resulting from existing CO₂ emissions not too far in the future”, concludes Thomas Rehm.

The national joint research project CarbonCat is funded by the Federal Ministry of Education and Research under the support measure “CO₂ Plus”. The project partners will receive a funding of 1.34 million € for a period of three years.

Contribution of the project Partners

Based on its expertise in the development and exploration of micro structured reactors Fraunhofer ICT-IMM will realize a continuously operating reactor plant whose core will be the novel diamond photocatalyst. The physical adaptation of the diamond material applied in the micro reactor as well as the detailed investigation of the photocatalytic process in continuous operation mode also is part of ICT-IMM’s tasks.

Professor Krüger’s research group at the Julius-Maximilians-Universität Würzburg is dealing with the fabrication, characterization and application of nano scale carbon-based materials, especially diamond, for more than 10 years. CarbonCat will make use of the methods to establish an exceptionally stable link of functional molecules at diamond surfaces which have been developed by the research group. These methods will help to optimize the diamond material for its use as photocatalyst in the micro reactor.

Sahlmann Photochemical Solutions will develop the light sources required for the photocatalysis in the reactor system within the CarbonCat project. The tailor-made fabrication of the required light sources, their spectral measurement as well as their evaluation to ensure safety in the workplace is part of the tasks.

Dr. Stefan Kiesewalter | Fraunhofer ICT-IMM
Further information:
http://www.imm.fraunhofer.de

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>