Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Systems-wide genetic investigation of blood pressure regulation in the Framingham Heart Study


A genetic investigation of individuals in the Framingham Heart Study may prove useful to identify novel targets for the prevention or treatment of high blood pressure. The study, which takes a close look at networks of blood pressure-related genes, is published in the journal Molecular Systems Biology.

More than one billion people worldwide suffer from high blood pressure and this contributes significantly to deaths from cardiovascular disease. It is hoped that advances in understanding the genetic basis of how blood pressure is regulated will improve the prediction of susceptibility to cardiovascular disease and also provide insight into how individually tailored treatments for high blood pressure can reduce the risk of disease.

“For more than 50 years the Framingham Heart Study has been an invaluable source of research findings on the contributions of high blood pressure, high cholesterol, smoking and other factors to the development of cardiovascular disease,” says Daniel Levy, director of the Framingham Heart Study. “More recently we have launched a major initiative to identify and study the genes underlying cardiovascular and other chronic diseases in individuals taking part in the Framingham Heart Study since we believe that this research could lead to new treatments and better strategies for disease prevention.”

Dissecting genetic data to identify molecular alterations that lead to or cause disease is very challenging. In the present work, the authors developed a strategy that combines multiple types of large-scale genetic and molecular data. Specifically, the scientists first looked at a vast collection of gene expression data from 3679 individuals who were not receiving any drug treatment for high blood pressure. As a starting point, they combined information on likely genetic differences contributing to elevated blood pressure by incorporating genome-wide association studies with the gene expression data for all of the individuals they studied. As a next step, the researchers worked from the hypothesis that it would be the surrounding network of certain disease-causing genes that would have the most impact on blood pressure and disease susceptibility. Scientists have known for some time that looking at each gene in isolation is not a powerful enough way to determine how different genes underlie blood pressure and other complex traits. By looking at multiple genes and how they interact, the researchers were able to find four groups of genes linked to blood pressure that warranted further study to reveal key driver genes controlling blood pressure regulation.

“Our work was able to pinpoint several gene networks closely linked to the regulation of blood pressure,” says Tianxiao Huan, one of the lead authors of the study. “As a proof-of-concept, we validated one of these key driver genes, SH2B3, and demonstrated its relationship to hypertension in mice.”

The researchers revealed that mice lacking the Sh2b3 gene had normal blood pressure but showed an exaggerated blood pressure response to treatment with angiotensin-II, a naturally occurring hormone that causes blood vessels to contract. Adding further confidence that Sh2b3 can play a causal role in the dysregulation of blood pressure in humans, the scientists found that the genes predicted to be affected by Sh2b3 greatly overlapped with the set of genes whose expression is indeed affected in the mice that lack the Sh2b3 gene.

“Moving forward, it should be possible to study additional key driver genes in this way, which should help in our efforts to identify novel targets for the prevention and treatment of hypertension,” says Huan.

Integrative network analysis reveals molecular mechanisms of blood pressure regulation

Tianxiao Huan, Qingying Meng, Mohamed A. Saleh, Allison E. Norlander, Roby Joehanes, Jun Zhu, Brian H. Chen, Bin Zhang, Andrew D. Johnson, Saixia Ying, Paul Courchesne, Nalini Raghavachari, Richard Wang, Poching Liu, The International Consortium for Blood Pressure GWAS (ICBP), Christopher J. O'Donnell, Ramachandran Vasan, Peter J. Munson, Meena S.
Madhur, David G. Harrison, Xia Yang, and Daniel Levy

Read the paper:

Further information on Molecular Systems Biology is available at

Media Contacts

Barry Whyte
Head | Public Relations and Communications

Maria Polychronidou
Editor, Molecular Systems Biology
Tel: +49 6221 8891 410

About EMBO
EMBO is an organization of more than 1700 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

For more information: 

Yvonne Kaul | EMBO

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>