Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Systems-wide genetic investigation of blood pressure regulation in the Framingham Heart Study

16.04.2015

A genetic investigation of individuals in the Framingham Heart Study may prove useful to identify novel targets for the prevention or treatment of high blood pressure. The study, which takes a close look at networks of blood pressure-related genes, is published in the journal Molecular Systems Biology.

More than one billion people worldwide suffer from high blood pressure and this contributes significantly to deaths from cardiovascular disease. It is hoped that advances in understanding the genetic basis of how blood pressure is regulated will improve the prediction of susceptibility to cardiovascular disease and also provide insight into how individually tailored treatments for high blood pressure can reduce the risk of disease.

“For more than 50 years the Framingham Heart Study has been an invaluable source of research findings on the contributions of high blood pressure, high cholesterol, smoking and other factors to the development of cardiovascular disease,” says Daniel Levy, director of the Framingham Heart Study. “More recently we have launched a major initiative to identify and study the genes underlying cardiovascular and other chronic diseases in individuals taking part in the Framingham Heart Study since we believe that this research could lead to new treatments and better strategies for disease prevention.”

Dissecting genetic data to identify molecular alterations that lead to or cause disease is very challenging. In the present work, the authors developed a strategy that combines multiple types of large-scale genetic and molecular data. Specifically, the scientists first looked at a vast collection of gene expression data from 3679 individuals who were not receiving any drug treatment for high blood pressure. As a starting point, they combined information on likely genetic differences contributing to elevated blood pressure by incorporating genome-wide association studies with the gene expression data for all of the individuals they studied. As a next step, the researchers worked from the hypothesis that it would be the surrounding network of certain disease-causing genes that would have the most impact on blood pressure and disease susceptibility. Scientists have known for some time that looking at each gene in isolation is not a powerful enough way to determine how different genes underlie blood pressure and other complex traits. By looking at multiple genes and how they interact, the researchers were able to find four groups of genes linked to blood pressure that warranted further study to reveal key driver genes controlling blood pressure regulation.

“Our work was able to pinpoint several gene networks closely linked to the regulation of blood pressure,” says Tianxiao Huan, one of the lead authors of the study. “As a proof-of-concept, we validated one of these key driver genes, SH2B3, and demonstrated its relationship to hypertension in mice.”

The researchers revealed that mice lacking the Sh2b3 gene had normal blood pressure but showed an exaggerated blood pressure response to treatment with angiotensin-II, a naturally occurring hormone that causes blood vessels to contract. Adding further confidence that Sh2b3 can play a causal role in the dysregulation of blood pressure in humans, the scientists found that the genes predicted to be affected by Sh2b3 greatly overlapped with the set of genes whose expression is indeed affected in the mice that lack the Sh2b3 gene.

“Moving forward, it should be possible to study additional key driver genes in this way, which should help in our efforts to identify novel targets for the prevention and treatment of hypertension,” says Huan.

Integrative network analysis reveals molecular mechanisms of blood pressure regulation

Tianxiao Huan, Qingying Meng, Mohamed A. Saleh, Allison E. Norlander, Roby Joehanes, Jun Zhu, Brian H. Chen, Bin Zhang, Andrew D. Johnson, Saixia Ying, Paul Courchesne, Nalini Raghavachari, Richard Wang, Poching Liu, The International Consortium for Blood Pressure GWAS (ICBP), Christopher J. O'Donnell, Ramachandran Vasan, Peter J. Munson, Meena S.
Madhur, David G. Harrison, Xia Yang, and Daniel Levy

Read the paper:
http://msb.embopress.org/content/11/4/799

Further information on Molecular Systems Biology is available at http://msb.embopress.org

Media Contacts

Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org

Maria Polychronidou
Editor, Molecular Systems Biology
Tel: +49 6221 8891 410
maria.polychronidou@embo.org

About EMBO
EMBO is an organization of more than 1700 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

For more information: www.embo.org 

Yvonne Kaul | EMBO

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>