Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic Lethality Offers a New Approach to Kill Tumor Cells, Explains Moffitt Cancer Center Researcher

31.10.2014

The scientific community has made significant strides in recent years in identifying important genetic contributors to malignancy and developing therapeutic agents that target altered genes and proteins.

A recent approach to treat cancer called synthetic lethality takes advantage of genetic alterations in cancer cells that make them more susceptible to certain drugs. Alan F. List, MD, president and CEO of Moffitt Cancer Center, co-authored an article on synthetic lethality featured in the October 30 issue of the New England Journal of Medicine.

“Genetic alterations in cancer in humans may involve gene inactivation, amplification or inactivation,” said List. These changes are not present in nonmalignant cells. Common chemotherapeutic agents aggressively kill tumor cells irrespective of genetic alterations. They also have a negative impact on normal cells and can cause significant side effects. Synthetic lethality harnesses the genetic differences between tumor cells and normal cells to minimize the effects on normal cells, and maximize a drug’s effects on cancer cells.

Synthetic lethality can target a variety of cellular defects, including alterations in DNA repair, cell-cycle control and metabolism. This approach can also be used to target interactions between tumor cells and surrounding normal cells that promote tumor survival and oncogenes that drive tumorigenesis that are difficult to target directly. Many of the synthetic lethal drugs and targets have been identified in large-scale drug screens of the entire human genome.

An example of synthetic lethality is the recent approach being investigated to treat breast cancer patients with BRCA1 and BRCA2 mutations. BRCA1 plays an important role is repairing damaged DNA. Women who have mutations in BRCA1 or BRCA2 have an increased risk of developing breast and ovarian cancer because their cells cannot properly repair DNA. This suggests that BRCA mutated breast cancer cells may be more susceptible to drugs that target DNA. Laboratory studies have confirmed this hypothesis by showing that agents that target another DNA repair protein called PARP significantly kill BRCA mutated cells. Several PARP inhibitors are now being investigated in clinical trials in breast cancer patients, and early results are promising.

“The goal of current anticancer approaches is to offer individualized and highly selective therapy. The treatment model for many anticancer approaches has been expanded, with movement away from dose-intensive, non-targeted cytotoxic agents to combination chemoimmunotherapy, new therapeutic combinations and targeted agents,” said List. Synthetic lethality approaches may provide an additional avenue for individualized patient treatment.

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Moffitt is the top-ranked cancer hospital in the Southeast and has been listed in U.S. News & World Report’s “Best Hospitals” for cancer since 1999. With more than 4,500 employees, Moffitt has an economic impact on Florida of nearly $1.6 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, Twitter and YouTube.

Kim Polacek | EurekAlert!
Further information:
http://moffitt.org/home/moffitt-in-the-news/press-releases/2014/list-nejm-synthetic-lethality-2014

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>