Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synapses always on the starting blocks

28.10.2014

Vesicles filled with neurotransmitters touch the cell membrane, thereby enabling their rapid-fire release

While neurons rapidly propagate information in their interior via electrical signals, they communicate with each other at special contact points known as the synapses. Chemical messenger substances, the neurotransmitters, are stored in vesicles at the synapses.


Three-dimensional reconstruction of a synapse in the mouse brain. Readily releasable fusionable synaptic vesicles (blue, around 45 millionths of a millimetre in diameter) are docked at the cell membrane.

© MPI f. Experimental Medicine/ Benjamin H. Cooper

When a synapse becomes active, some of these vesicles fuse with the cell membrane and release their contents. To ensure that valuable time is not lost, synapses always have some readily releasable vesicles on standby. With the help of high-resolution, three-dimensional electron microscopy, scientists at the Max Planck Institute of Experimental Medicine in Göttingen succeeded in demonstrating that these fusionable vesicles have a very special characteristic: they already have close contact with the cell membrane long before the actual fusion occurs. In addition, the research team also decoded the molecular machinery that facilitates the operation of this docking mechanism.

The fusion of the neurotransmitter vesicles with the cell membrane involves close cooperation between numerous protein components, which monitor each other and ensure that every single ‘participant’ is always in the right place. This is referred to as the fusion machinery and the comparison is an apt one: if a cogwheel in a clock mechanism is broken, the hands do not move. In a similar way, faulty or missing molecules impair synaptic operations.

In research studies carried out some years ago, Nils Brose and his colleague JeongSeop Rhee from the Max Planck Institute of Experimental Medicine in Göttingen already demonstrated that the transmission of information at the synapses in genetically modified mice, in which all known genes of the Munc13 or CAPS proteins had been switched off, is severely defective.

Although the neurons of the genetically modified mice do not differ from those of healthy mice when examined under an optical microscope, if Munc13 is missing, the release of neurotransmitters actually grinds to a halt completely. Brose and Rhee’s findings showed that to be able to react immediately to signals at all times, each synapse must keep a small number of ‘readily releasable’ fusionable vesicles on standby.

But how do Munc13 and CAPS convert the vesicles to this kind of fusionable state? To answer this question, the Göttingen-based scientists studied the synaptic contacts in the minutest possible detail. To do this, neurobiologists Cordelia Imig and Ben Cooper, who have been working with Brose and Rhee for many years, used a high-pressure freezing process.

This involves the rapid freezing of neurons in the brain tissue under high pressure so that no disruptive ice crystals are formed and the fine structure of the cells is particularly well conserved. The samples obtained in this way were then analysed using electron tomography. Using this method, electron microscope images of a structure are recorded from many different angles, in a similar way to the process used in medical computed tomography. The individual images can then be combined on the computer to give a high-resolution three-dimensional image – of a synapse in this case (see image).

“Our results showed that readily releasable vesicles in healthy synapses touch the cell membrane,” explains Cooper. “However, if Munc13 and CAPS proteins are missing, the vesicles do not reach the active zone and accumulate a few nanometres away from it.” To their astonishment, the researchers also observed that SNARE proteins, which collaborate with Munc13 and CAPS in the nerve endings, are also involved in this docking process. SNARE proteins are found in the cell and vesicle membranes of healthy synapses and control the fusion of the two membranes during neurotransmitter release.

When a vesicle approaches the cell membrane, the individual SNARE molecules line up opposite each other like the sides of a zip and pull the membranes close to each other in this way. The vesicles await the starting gun for their fusion in this state – in the starting blocks, so to speak.

The findings of the neurobiologists in Göttingen prove that Munc13, CAPS and SNARE proteins closely align the vesicle and cell membrane in the synapse, long before the signal for fusion is given. This is the only way that the fast and controlled transmission of information at the synapse can be guaranteed, thanks to which we can react specifically to information from our environment. “It had long been clear that synapses have to be extremely fast to carry out all of the many complex brain functions.

Our study shows for the first time how this is managed at the molecular level and on the level of the synaptic vesicles,” says Brose. Because almost all of the protein components involved in this process also play a role in neurological and psychiatric diseases, the Göttingen-based scientists believe that their discovery will soon benefit medical research.

Contact

Prof. Dr. Nils Brose

Max Planck Institute for Experimental Medicine, Göttingen
Phone:+49 551 3899-725Fax:+49 551 3899-715
 

Dr. Jeong-Seop Rhee

Max Planck Institute for Experimental Medicine, Göttingen
Phone:+49 551 3899-694Fax:+49 551 3899-715

Original publication

 
Imig, C., Min, S.-W., Krinner, S., Arancillo, M., Rosenmund, C., Südhof, T.C., Rhee, J.-S., Brose, N. and Cooper, B.H.
The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones.

Prof. Dr. Nils Brose | Max-Planck-Institute

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>