Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swimming in confined spaces

13.02.2018

Max Planck researchers from Göttingen reveal how microswimmers navigate complex geometries

Microbes can be found in a variety of habitats and ecosystems, where they have almost perfectly adapted to their natural environment. In particular, unicellular microalgae do not only live as phytoplankton in the oceans, but also in moist soil or within the surface layers of rocks. Physicists from the Max Planck Institute for Dynamics and Self-Organization in Göttingen have now discovered how such motile microorganisms navigate complex geometries.


Swimming in confinement: How microalgae navigate complex geometries.

@ Fabian Jan Schwarzendahl, MPIDS

Microorganisms can move themselves using a variety of methods. Many cell types have developed special mechanisms to maneuver via creeping movements on a surface. However, microorganisms that undergo photosynthesis do not live exclusively on surfaces, but also in liquid, where they can propel themselves using microscopic hairs called flagella.

In the case of the unicellular green alga Chlamydomonas, a widely studied model organism in microbiology, two flagella beat simultaneously in a breaststroke-like motion to propel the cell. In this way, the motile microalgae can ideally detect nutrients and light sources, covering a distance of about ten times their body size every second.

A research team under the direction of physicists Dr. Oliver Bäumchen and Dr. Marco Mazza from the Max Planck Institute for Dynamics and Self-Organization in Göttingen have now identified how these cells navigate the complex porous structures of liquid and surfaces in their natural environment.

“For the first time, we have succeeded in trapping single, living cells within parallel, isolated chambers no larger than a human hair on a microfluidic chip. Using this model system in controlled laboratory conditions, we were able to investigate the influence of the geometry of the organism’s natural microhabitat on its swimming behavior”, says Bäumchen.

The team of theoreticians under the direction of Marco Mazza has developed a computer model to substantiate the experiments with simulations. The researchers have now published their findings as an article in the renowned scientific journal Physical Review Letters.

Oliver Bäumchen has already been working several years on the function of the flagella and the physical mechanisms through which these little hairs interact with surfaces and also how the cells use their flagella to traverse through a fluid. Bäumchen: “The unicellular microalga Chlamydomonas is an ideal model system for studying many important biophysical phenomena, for example the flagellar adhesion to surfaces, the synchronized beating of the flagella as a propulsion mechanism, the interaction of molecular motors, and the function of photoreceptors as the cells’ light sensors.

The microfluidic experiments were performed by Bäumchen’s colleagues Tanya Ostapenko and Thomas Böddeker. “We have systematically varied the size and geometry of the chambers and found that the cells are less likely to escape the wall for a increasing wall curvature. The cells swim near the wall for a surprisingly long time for larger wall curvatures,” says Tanya Ostapenko, the first author of the study.

It turns out that the flagella, upon contact with the wall, are able to reorient the cell at a fixed angle away from the wall. “The angle at which the cell scatters is only 10-20 degrees. This is so shallow that the microswimmer in circular chambers can barely swim away before encountering another interface, thus making it difficult to escape from sufficiently curved walls,” says Fabian Schwarzendahl, a doctoral student in the theory group of Marco Mazza.

The computer model from Mazza’s theory team quantitatively confirms the experiments and provides a valuable tool that the researchers now want to implement in simulations for other systems. Mazza: “There is a fundamental difference between the microalgae we study and the bacterial microswimmers that have been studied previously.

Many bacteria have their propulsion mechanism located at the rear end of the cell instead of towards the front. Until now, it was expected that these microalgae would behave much differently than bacteria when they encounter a surface. In environments mimicking the natural habitats in which the microalgae are found, this is surprisingly not the case.”

For several years now, the capability of microalgae to perform photosynthesis has been exploited to produce e.g. biofuel in bioreactors equipped with a glass-tube system. Beyond these applications, the model characteristics of these cells are of enormous importance for fundamental research. Bäumchen: “The microalgae’s flagella represent a universal building block in nature, which is also found as so-called cilia in the human body.

Their functions are extremely important, e.g. cilia of pulmonary epithelial cells remove mucus and particles from the respiratory tract, and the cilia of sperm cells enable their motility.” The results of the research team provide a better understanding of how microswimmers behave in confined spaces. This could be of great importance with regard to applications for targeted drug delivery by means of artificial microswimmers.

Weitere Informationen:

http://www.ds.mpg.de/3209683/180213_pm_swimmer
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.068002

Carolin Hoffrogge | Max-Planck-Institut für Dynamik und Selbstorganisation

Further reports about: Chlamydomonas Photosynthesis flagella microalgae natural environment

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>