Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet proteins do better - Max Planck researchers uncover a new function of protein modifications

03.12.2014

Many proteins in our cells are decorated with sugar molecule add-ons, which are essential for the functions of these proteins. One particular type of sugar modification, called GlcNAc, is of key importance, because our cells cannot survive without it.

Researchers at the Max Planck Institute of Biochemistry in Martinsried near Munich have recently uncovered a previously unknown mechanism explaining how this sugar residue affects protein function and thereby influences our development. These results have been published in the journal Developmental Cell.


In wild-type Drosophila embryos, the Polyhomeotic (Ph) protein is O-GlcNAcylated (pink diamonds), which is necessary to repress its target genes (no black staining).

Picture: Maria Gambetta / Copyright: MPI of Biochemistry

Proteins are responsible for all vital processes in the cells of our body. However, they are not alone: tiny sugar molecules are decorating many proteins and they often are important to make them work properly. One particular type of sugar modification, called O-linked N-acetylglucosamine - in short called O-GlcNAc - seems to be of fundamental importance, because our cells cannot survive without it.

Yet why exactly human cells die if their proteins lack the O-GlcNAc tag remains a mystery. Jürg Müller and Maria Cristina Gambetta at the Max Planck Institute of Biochemistry in Martinsried near Munich recently have addressed this question and set out to identify substrate proteins whose modification by O-GlcNAc is essential for biological processes. For their experiments the researchers made use of the less complex model organism Drosophila, also known as the fruit fly.

The researchers found that flies lacking O-GlcNAc show serious defects during their development: their cells fail to ‘remember’, which part of the body they were supposed to form. “Interestingly, we also observed the very same defects in flies lacking any member of the so-called Polycomb group of proteins” explains Maria Cristina Gambetta, the first author of the study.

The Polycomb proteins permit cells to remember their fate by specifically silencing genes, which are not needed in those cells. However, how did these two results fit together? Why are the consequences of missing O-GlcNAc so similar to the consequences of missing Polycomb proteins?

The researchers were able to show that the function of one specific Polycomb protein, called Polyhomeotic - in short Ph - only functions properly if it carries the O-GlcNAc tag. The researchers found that the O-GlcNAc tag is critical to prevent Ph from forming large macromolecular clumps, which would interfere with its ability to silence its target genes.

“This constitutes a previously unappreciated biochemical function of O-GlcNAc, namely to prevent the aggregation of a protein under normal physiological conditions”, explains Jürg Müller. “Moreover, we have been able to show that Polycomb repression is the most critical cellular process in flies that relies on O-GlcNAc.”

But how do these findings help us to advance our understanding of why our human cells need O-GlcNAc? In the latest study the researchers found out that fly and human Ph show high similarity. Consequently, also the human protein required O-GlcNAc in order to not clump together with other Ph proteins. “It will be interesting to further investigate, whether defective silencing of Polycomb target genes is also a major biological process that goes awry in human cells lacking O-GlcNAc”, Gambetta sets the agenda for the upcoming experiments. The results have recently been published in the journal Developmental Cell.
[HS]

Original Publication:
M.C. Gambetta and J. Müller: O-GlcNAcylation Prevents Aggregation of the Polycomb Group Repressor Polyhomeotic. Developmental Cell, November 26, 2014.
DOI:10.1016/j.devcel.2014.10.020

Contact:
Dr. Jürg Müller
Laboratory of Chromatin Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
E-Mail: muellerj@biochem.mpg.de
http://www.biochem.mpg.de/mueller

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Phone: +49 (0) 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de


Weitere Informationen:

http://www.biochem.mpg.de/4876634/058_mueller_glcnac  - Link to the press release
http://www.biochem.mpg.de/mueller  - Research group "Chromatin Biology"
http://www.biochem.mpg.de/news  - More press releases of the MPI of Biochemistry

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>