Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet proteins do better - Max Planck researchers uncover a new function of protein modifications

03.12.2014

Many proteins in our cells are decorated with sugar molecule add-ons, which are essential for the functions of these proteins. One particular type of sugar modification, called GlcNAc, is of key importance, because our cells cannot survive without it.

Researchers at the Max Planck Institute of Biochemistry in Martinsried near Munich have recently uncovered a previously unknown mechanism explaining how this sugar residue affects protein function and thereby influences our development. These results have been published in the journal Developmental Cell.


In wild-type Drosophila embryos, the Polyhomeotic (Ph) protein is O-GlcNAcylated (pink diamonds), which is necessary to repress its target genes (no black staining).

Picture: Maria Gambetta / Copyright: MPI of Biochemistry

Proteins are responsible for all vital processes in the cells of our body. However, they are not alone: tiny sugar molecules are decorating many proteins and they often are important to make them work properly. One particular type of sugar modification, called O-linked N-acetylglucosamine - in short called O-GlcNAc - seems to be of fundamental importance, because our cells cannot survive without it.

Yet why exactly human cells die if their proteins lack the O-GlcNAc tag remains a mystery. Jürg Müller and Maria Cristina Gambetta at the Max Planck Institute of Biochemistry in Martinsried near Munich recently have addressed this question and set out to identify substrate proteins whose modification by O-GlcNAc is essential for biological processes. For their experiments the researchers made use of the less complex model organism Drosophila, also known as the fruit fly.

The researchers found that flies lacking O-GlcNAc show serious defects during their development: their cells fail to ‘remember’, which part of the body they were supposed to form. “Interestingly, we also observed the very same defects in flies lacking any member of the so-called Polycomb group of proteins” explains Maria Cristina Gambetta, the first author of the study.

The Polycomb proteins permit cells to remember their fate by specifically silencing genes, which are not needed in those cells. However, how did these two results fit together? Why are the consequences of missing O-GlcNAc so similar to the consequences of missing Polycomb proteins?

The researchers were able to show that the function of one specific Polycomb protein, called Polyhomeotic - in short Ph - only functions properly if it carries the O-GlcNAc tag. The researchers found that the O-GlcNAc tag is critical to prevent Ph from forming large macromolecular clumps, which would interfere with its ability to silence its target genes.

“This constitutes a previously unappreciated biochemical function of O-GlcNAc, namely to prevent the aggregation of a protein under normal physiological conditions”, explains Jürg Müller. “Moreover, we have been able to show that Polycomb repression is the most critical cellular process in flies that relies on O-GlcNAc.”

But how do these findings help us to advance our understanding of why our human cells need O-GlcNAc? In the latest study the researchers found out that fly and human Ph show high similarity. Consequently, also the human protein required O-GlcNAc in order to not clump together with other Ph proteins. “It will be interesting to further investigate, whether defective silencing of Polycomb target genes is also a major biological process that goes awry in human cells lacking O-GlcNAc”, Gambetta sets the agenda for the upcoming experiments. The results have recently been published in the journal Developmental Cell.
[HS]

Original Publication:
M.C. Gambetta and J. Müller: O-GlcNAcylation Prevents Aggregation of the Polycomb Group Repressor Polyhomeotic. Developmental Cell, November 26, 2014.
DOI:10.1016/j.devcel.2014.10.020

Contact:
Dr. Jürg Müller
Laboratory of Chromatin Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
E-Mail: muellerj@biochem.mpg.de
http://www.biochem.mpg.de/mueller

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Phone: +49 (0) 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de


Weitere Informationen:

http://www.biochem.mpg.de/4876634/058_mueller_glcnac  - Link to the press release
http://www.biochem.mpg.de/mueller  - Research group "Chromatin Biology"
http://www.biochem.mpg.de/news  - More press releases of the MPI of Biochemistry

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>