Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sweet mysteries of the nervous system: RUB-researchers develop new antibody for cell labelling

10.05.2011
Stem cells can be distinguished on the basis of sugar residues

Researchers in Bochum have produced an antibody that allows them to distinguish the numerous types of stem cells in the nervous system better than before.


Two types of stem cells were stained with the new Bochum antibody 5750 (red) and the conventional antibody 487 (green). They can be clearly separated, since the antibodies recognise different LewisX sugar residues. © the American Society for Biochemistry and Molecular Biology.

“In order to use stem cells for therapeutic purposes, it is important to be able to distinguish between the different types”, explained Eva Hennen of the RUB Department of Cell Morphology and Molecular Neurobiology (Faculty of Biology and Biotechnology). The antibody 5750 recognises a specific sugar residue on the cell surface, which is called LewisX.

The research group lead by Prof. Dr. Andreas Faissner has now been able to use LewisX for the first time to separate different types of stem cells. The researchers report on their results in the Journal of Biological Chemistry.

Unexpected sugar diversity

Antibodies that recognise the LewisX sugar residue are used routinely to identify so-called neural stem cells from which the various cells of the nervous system originate. Prof. Faissner’s team has now shown that the designation “LewisX” does not just cover a single sugar motif, but a whole range of different sugar residues. Different types of neural stem cells are equipped with individual combinations of LewisX sugar residues on their cell surface. The new Bochum antibody 5750 recognises a different LewisX sugar residue to the antibodies previously used. “This sugar diversity could also be interesting for cancer diagnosis” Prof. Faissner explained, “because LewisX sugars have also been detected on tumour cells”.

Identifying properties of stem cells

With the aid of the new antibody 5750, certain types of neural stem cells can be isolated from a mixture of different cell types. The aim of Prof. Faissner’s research group is now to examine the properties of the stem cells which carry the LewisX sugar residues. The researchers have already found out that the LewisX motif on the cell surface changes when the stem cells develop further – for example into oligodendrocytes, which form the insulation layer of the nerve cells, or into nerve cells themselves.

Bibliographic record

Hennen E, Czopka T, Faissner A (2011) Structurally Distinct LewisX Glycans Distinguish Subpopulations of Neural Stem/Progenitor Cells. The Journal of Biological Chemistry 286: 16321-16331. doi 10.1074/jbc.M110.201095

Further information

Prof. Dr. Andreas Faissner, Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Tel. 0234/32-14313, Andreas.Faissner@ruhr-uni-bochum.de

Edited by Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>