Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surrounded by potential: New science in converting biomass

04.10.2017

In every plant--from trees to crops--there exists a substance that makes up its wood or stems, fiber, and cell walls. This substance is a complex natural polymer called lignin, and it is the second largest renewable carbon source on the planet after cellulose.

This natural abundance has drawn high interest from the research community to chemically convert lignin into biofuels. And if plant life really does hold the building blocks for renewable fuels, it would seem that we are literally surrounded by potential energy sources everywhere green grows.


This is a TEM image of Ce-P-Pd elemental map.

Credit: Igor Slowing

But untangling the complex chains of these polymers into components, which can be useful for liquid fuel and other applications ranging from pharmaceuticals to plastics, has presented an ongoing challenge to science and industry.

There are currently two common ways of processing lignin. One requires an acid plus high heat, and the other is pyrolysis, or treating with high heat in the absence of oxygen. Besides being energy-consuming processing methods, the results are less than optimal.

"You end up with individual molecules that are unstable and reactive, and they easily re-polymerize. It's kind of a horrible mess, really," explains Igor Slowing, an expert in heterogeneous catalysis at the U.S. Department of Energy's Ames Laboratory. "We need to be able to deconstruct lignin in a way that is economically feasible and into stable, readily useful components."

Slowing and other scientists at Ames Laboratory are working to reach that commercialization goal, experimenting with chemical reactions that decompose lignin models at low temperatures and pressures. There are already known ways of salvaging useful byproducts out of lignin through the addition of a stabilization process. But Slowing and his research team took both the decomposition and stabilization processes further, by combining the two into one multi-functional catalyst, using phosphate-modified ceria.

"Our process does the breaking of lignin-like material and the stabilization in a single step in very mild conditions," said Slowing. "The interesting thing is that though there are two different types of chemical processes happening in a single material, they appear to be working synergistically, and are able to do that at a lower temperature."

In another experiment, Slowing's research team was able to process a related material, phenol, into useful industrial precursors for nylon production. This work used a catalyst made of ceria and palladium doped with sodium, which increased the reactivity of the process significantly. They also eliminated the use of hydrogen, which is produced from steam-treatment of natural gas, and used an energy-conserving alcohol-based hydrogenation process instead.

Research continues. "Both of these results were very promising, and our next step is to combine the two experiments into one, and achieve lignin deconstruction using hydrogen from a renewable source," said Slowing.

"Ames Laboratory is ideally situated for this kind of research," said Slowing. "We are able to collaborate with experts in several areas including catalytic chemistry, high throughput experimentation, spectroscopy, technoeconomic analysis; and in partnership with our contractor Iowa State University, we can also select and grow the best feedstocks."

###

Further reading: "Phosphate modified ceria as a Brønsted acidic/redox multifunctional catalyst," authored by Nicholas C. Nelson, Zhuoran Wang, Pranjali Naik, J. Sebastian Manzano, Marek Pruski, and Igor I. Slowing, and published in the Journal of Materials Chemistry A. Also, "Transfer hydrogenation over sodium-modified ceria: Enrichment of redox sites active for alcohol dehydrogenation," authored by Nicholas C. Nelson, Brett W. Boote, Pranjali Naik, Aaron J. Rossini, Emily A. Smith and Igor I. Slowing, and published in the Journal of Catalysis.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Kerry Gibson | EurekAlert!

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>