Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising role of bacterial genes in evolution

12.10.2016

We generally think of inheritance as the genetic transfer from parent to offspring and that evolution moves toward greater complexity. But there are other ways that genes are transferred between organisms.

Sometimes a "host" organism can obtain genes from another organism that resides within its own cell (called an endosymbiont) through a process known as endosymbiotic gene transfer. At other times, an organism can obtain genes from a creature that lives in the surrounding environment, or from something that it eats, which is called horizontal gene transfer.


This micrograph of the single-celled Paulinella shows the the photosynthetic "machinery" in green.

Credit: Eva Nowack

Furthermore, some levels of gene transfer can result in extensive loss of genes and genome reduction, especially for organisms that live as endosymbionts. For the first time, researchers have demonstrated that horizontal gene transfer may play a dominant role in compensating for genome reduction in an endosymbiont, and that this may be a key feature in the evolutionary transformation of an endosymbiont into an organelle (a longstanding organ inside a cell that often has specialized functions).

The research, published in the October 10 on-line edition of the Proceedings of the National Academy of Sciences, was conducted as a collaboration between scientists at Carnegie's Department of Plant Biology*, Rutgers University and Heinrich-Heine-Universität in Düsseldorf.

Specialized organelles called chloroplasts, which occur in plants and algae, are critical for performing the process of photosynthesis, and thus manufacturing sugars, starch and oils. These organelles originated more than 1 billion years ago when a photosynthetic bacterium, called a cyanobacterium, was engulfed by a host organism called a protist. There was a subsequent massive loss of genes from the genome of the cyanobacterium. Some of the lost cyanobacterial genes were transferred to the nucleus of the host cell through endosymbiotic gene transfer, while others were completely lost. This genome reduction was accompanied by the loss of many endosymbiont genes critical for the chain of enzymatic reactions involved in the biosynthesis of various essential compounds. How the host compensated for this gene reduction was only partially known.

Surprising results that shed light on the evolution of organelles from endosymbionts were obtained using the green, single-celled organism Paulinella chromatophora. Carnegie co-author Arthur Grossman explained: "We have recently proposed that the loss of genes from the photosynthetic organelle of P. chromatophora, which is called a chromatophore (originally an endosymbiotic cyanobacterium that was engulfed by a Paulinella species 60-200 million years ago), was in many cases compensated for by genes coming from neighboring bacteria in the environment. These new genes were integrated into the host nucleus and the proteins made from these genes were routed into chromatophores, where they compensate for the loss of genes."

Lead author Eva Nowack remarked: "Of the at least 229 genes in the P. chromatophora nucleus that were acquired from various bacteria, only about 25% are of cyanobacterial origin and may have originated from endosymbiotic gene transfer. Excitingly, many of the remainder were acquired through horizontal gene transfer, representing genes from a variety of bacteria. Many of these bacteria-derived genes produce proteins that fill in gaps in chromatophore localized biosynthetic pathways. The original genes that filled the gaps were lost as a consequence of chromatophore genome reduction. This result suggests a dominant role for horizontal gene transfer in compensating for endosymbiont genome reduction."

Furthermore, researchers found that a sister (ancestral) organism to P. chromatophora does not have a chromatophore and feeds on a variety of different bacteria, much like the way that white blood cells consume invading bacteria. In this new work, it is hypothesized that this method of feeding, called phagotrophy, may allow for the acquisition of different bacterial genes through horizontal gene transfer. In this way, the process of feeding facilitated bacterial gene selection as the cyanobacterial endosymbiont became a permanent resident within the phagotrophic host during early stages of chromatophore evolution.

###

* Authors on the paper are Eva C.M. Nowack, Dana C. Price, Debashish Bhattacharya, Anna Singer, Michael Melkonian, and Arthur R. Grossman This study was supported by National Science Foundation grant MCB-10370 (to A.R.G.), EF 08-27023 and OCE 11-29203 (to D.B.), and Deutsche Forschungsgemeinschaft Grant NO 1090/1-1 (to E.C.M.N.)

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Arthur Grossman | EurekAlert!

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>