Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising role of bacterial genes in evolution

12.10.2016

We generally think of inheritance as the genetic transfer from parent to offspring and that evolution moves toward greater complexity. But there are other ways that genes are transferred between organisms.

Sometimes a "host" organism can obtain genes from another organism that resides within its own cell (called an endosymbiont) through a process known as endosymbiotic gene transfer. At other times, an organism can obtain genes from a creature that lives in the surrounding environment, or from something that it eats, which is called horizontal gene transfer.


This micrograph of the single-celled Paulinella shows the the photosynthetic "machinery" in green.

Credit: Eva Nowack

Furthermore, some levels of gene transfer can result in extensive loss of genes and genome reduction, especially for organisms that live as endosymbionts. For the first time, researchers have demonstrated that horizontal gene transfer may play a dominant role in compensating for genome reduction in an endosymbiont, and that this may be a key feature in the evolutionary transformation of an endosymbiont into an organelle (a longstanding organ inside a cell that often has specialized functions).

The research, published in the October 10 on-line edition of the Proceedings of the National Academy of Sciences, was conducted as a collaboration between scientists at Carnegie's Department of Plant Biology*, Rutgers University and Heinrich-Heine-Universität in Düsseldorf.

Specialized organelles called chloroplasts, which occur in plants and algae, are critical for performing the process of photosynthesis, and thus manufacturing sugars, starch and oils. These organelles originated more than 1 billion years ago when a photosynthetic bacterium, called a cyanobacterium, was engulfed by a host organism called a protist. There was a subsequent massive loss of genes from the genome of the cyanobacterium. Some of the lost cyanobacterial genes were transferred to the nucleus of the host cell through endosymbiotic gene transfer, while others were completely lost. This genome reduction was accompanied by the loss of many endosymbiont genes critical for the chain of enzymatic reactions involved in the biosynthesis of various essential compounds. How the host compensated for this gene reduction was only partially known.

Surprising results that shed light on the evolution of organelles from endosymbionts were obtained using the green, single-celled organism Paulinella chromatophora. Carnegie co-author Arthur Grossman explained: "We have recently proposed that the loss of genes from the photosynthetic organelle of P. chromatophora, which is called a chromatophore (originally an endosymbiotic cyanobacterium that was engulfed by a Paulinella species 60-200 million years ago), was in many cases compensated for by genes coming from neighboring bacteria in the environment. These new genes were integrated into the host nucleus and the proteins made from these genes were routed into chromatophores, where they compensate for the loss of genes."

Lead author Eva Nowack remarked: "Of the at least 229 genes in the P. chromatophora nucleus that were acquired from various bacteria, only about 25% are of cyanobacterial origin and may have originated from endosymbiotic gene transfer. Excitingly, many of the remainder were acquired through horizontal gene transfer, representing genes from a variety of bacteria. Many of these bacteria-derived genes produce proteins that fill in gaps in chromatophore localized biosynthetic pathways. The original genes that filled the gaps were lost as a consequence of chromatophore genome reduction. This result suggests a dominant role for horizontal gene transfer in compensating for endosymbiont genome reduction."

Furthermore, researchers found that a sister (ancestral) organism to P. chromatophora does not have a chromatophore and feeds on a variety of different bacteria, much like the way that white blood cells consume invading bacteria. In this new work, it is hypothesized that this method of feeding, called phagotrophy, may allow for the acquisition of different bacterial genes through horizontal gene transfer. In this way, the process of feeding facilitated bacterial gene selection as the cyanobacterial endosymbiont became a permanent resident within the phagotrophic host during early stages of chromatophore evolution.

###

* Authors on the paper are Eva C.M. Nowack, Dana C. Price, Debashish Bhattacharya, Anna Singer, Michael Melkonian, and Arthur R. Grossman This study was supported by National Science Foundation grant MCB-10370 (to A.R.G.), EF 08-27023 and OCE 11-29203 (to D.B.), and Deutsche Forschungsgemeinschaft Grant NO 1090/1-1 (to E.C.M.N.)

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Arthur Grossman | EurekAlert!

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>