Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface modification using accelerated electrons: fast, gentle, precise, stable and durable

14.02.2018

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development in the area of surface functionalization, will be presenting research results from the field of biofunctionalization and hygienization at the 13th ThGOT Thementage Grenz- and Oberflächentechnik in Zeulenroda, Germany, March 13 – 15, 2018.

Surfaces must satisfy a wide range of requirements: they need to be decorative, and even contribute substantially to hygiene. They also play a large role in biomedicine.


Wetting properties of functionalized surfaces with various liquids

© Fraunhofer FEP, Picture in printable resolution: www.fep.fraunhofer.de/press

There are numerous processes for functionalizing surfaces, depending on the application. Many are already well established and others are still under development by scientists throughout the world. Scientists at Fraunhofer FEP have already been working for a considerable time on functionalizing surfaces for the medical technology field.

In addition to coating technologies, accelerated low-energy electrons are also employed for this purpose. The surface is selectively treated with these electrons in order to achieve suitable properties. Besides antibacterial effects, “self-cleaning” surfaces can also be created in this way.

Electron beam treatment can result in a modification of the wetting characteristics for the surface (surface hydrophilicity), for example. In this way, the interaction of the surface with the environment can be selectively influenced. Human cells attach better, while bacteria in turn are rejected.

The order of magnitude of the dimensions for which this modification was able to be carried out is particularly noteworthy. Finely masking of samples with a lattice structure produced alternate hydrophilic (good wetting) and hydrophobic (poor wetting) surface areas with 100 μm separations. These very fine features characterized by differing surface energies are suited to lab-on-a-chip systems, for example, or for individualized growth patterns.

Gaby Gotzmann, head of hygienization, sterilization, and biofunctionalization at Fraunhofer FEP, explains: “While conventional processes often produce only temporary effects on surfaces, treatment with accelerated electrons leads to stable surfaces over a longer period. On suitable surfaces, the relevant areas can be treated very precisely, achieving penetration depths of even microns.”

Functionalization by means of electron beam was achieved rapidly. The challenge, however, lay in investigating the fundamental mechanisms of the effects in order to be able to reliably produce the results in the future. How the functionalization can be influenced by process parameters, needed to be explored. To accomplish this, comprehensive parametric studies were carried out by varying specific process parameters like atmosphere and incident energy, as well as in vitro cell tests that finally confirmed these insights.

The scientists are now able to set up a precise surface treatment procedure using electron beams for numerous surface applications in medical engineering and are seeking industrial partners for jointly producing functionalized surfaces.

Fraunhofer FEP at the 13th annual ThGOT 2018:

Exhibition booth

Conference presentation:
- „Langlebige Implantate – Herausforderungen an die Implantat-Knochenschnittstelle“
Gaby Gotzmann, 15.03.2018, 4:20 p.m.
- „Piezoelektrische AlN- und AlScN-Schichten für die energieautarke Sensorik“
Hagen Bartzsch, 13.03.2018, 1:50 p.m.

Poster:
- Electron beam curing of elastomers for 3D printing of biocompatible medical products
- Elektronenstrahlbasierte Fixierung von organischen Stoffen an medizintechnische Oberflächen

Press contact:

Mrs. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/TqM

Silvena Ilieva | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Life Sciences:

nachricht Primates in peril
15.06.2018 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Flying spider - Thekla's Wondrous Journey
15.06.2018 | Technische Universität Berlin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>