Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface modification using accelerated electrons: fast, gentle, precise, stable and durable

14.02.2018

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development in the area of surface functionalization, will be presenting research results from the field of biofunctionalization and hygienization at the 13th ThGOT Thementage Grenz- and Oberflächentechnik in Zeulenroda, Germany, March 13 – 15, 2018.

Surfaces must satisfy a wide range of requirements: they need to be decorative, and even contribute substantially to hygiene. They also play a large role in biomedicine.


Wetting properties of functionalized surfaces with various liquids

© Fraunhofer FEP, Picture in printable resolution: www.fep.fraunhofer.de/press

There are numerous processes for functionalizing surfaces, depending on the application. Many are already well established and others are still under development by scientists throughout the world. Scientists at Fraunhofer FEP have already been working for a considerable time on functionalizing surfaces for the medical technology field.

In addition to coating technologies, accelerated low-energy electrons are also employed for this purpose. The surface is selectively treated with these electrons in order to achieve suitable properties. Besides antibacterial effects, “self-cleaning” surfaces can also be created in this way.

Electron beam treatment can result in a modification of the wetting characteristics for the surface (surface hydrophilicity), for example. In this way, the interaction of the surface with the environment can be selectively influenced. Human cells attach better, while bacteria in turn are rejected.

The order of magnitude of the dimensions for which this modification was able to be carried out is particularly noteworthy. Finely masking of samples with a lattice structure produced alternate hydrophilic (good wetting) and hydrophobic (poor wetting) surface areas with 100 μm separations. These very fine features characterized by differing surface energies are suited to lab-on-a-chip systems, for example, or for individualized growth patterns.

Gaby Gotzmann, head of hygienization, sterilization, and biofunctionalization at Fraunhofer FEP, explains: “While conventional processes often produce only temporary effects on surfaces, treatment with accelerated electrons leads to stable surfaces over a longer period. On suitable surfaces, the relevant areas can be treated very precisely, achieving penetration depths of even microns.”

Functionalization by means of electron beam was achieved rapidly. The challenge, however, lay in investigating the fundamental mechanisms of the effects in order to be able to reliably produce the results in the future. How the functionalization can be influenced by process parameters, needed to be explored. To accomplish this, comprehensive parametric studies were carried out by varying specific process parameters like atmosphere and incident energy, as well as in vitro cell tests that finally confirmed these insights.

The scientists are now able to set up a precise surface treatment procedure using electron beams for numerous surface applications in medical engineering and are seeking industrial partners for jointly producing functionalized surfaces.

Fraunhofer FEP at the 13th annual ThGOT 2018:

Exhibition booth

Conference presentation:
- „Langlebige Implantate – Herausforderungen an die Implantat-Knochenschnittstelle“
Gaby Gotzmann, 15.03.2018, 4:20 p.m.
- „Piezoelektrische AlN- und AlScN-Schichten für die energieautarke Sensorik“
Hagen Bartzsch, 13.03.2018, 1:50 p.m.

Poster:
- Electron beam curing of elastomers for 3D printing of biocompatible medical products
- Elektronenstrahlbasierte Fixierung von organischen Stoffen an medizintechnische Oberflächen

Press contact:

Mrs. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/TqM

Silvena Ilieva | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>