Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconductivity: No resistance at record temperatures

18.08.2015

Hydrogen sulfide loses its electrical resistance under high pressure at minus 70 degrees Celsius

For many solid-state physicists, superconductors that are suitable for use at room temperature are still a dream. Up until now, the only materials known to conduct current with no electrical resistance and thus no loss did so only at very low temperatures.


The apparatus to generate high pressures, is amazingly handy. The researchers press the metal cell with screws together. The high pressure created in the center of the cell, only diamonds resist.

Thomas Hartmann

Accordingly, special copper ceramics (cuprates) took the leading positions in terms of transition temperature—the temperature at which the material loses its resistance. The record for a ceramic of this type is roughly minus 140 degrees Celsius at normal air pressure and minus 109 degrees Celsius at high pressure. In the ceramics, a special, unconventional form of superconductivity occurs. For conventional superconductivity, temperatures of at least minus 234 degrees Celsius have so far been necessary.

A team led by Mikhael Eremets, head of a working group at the Max Planck Institute for Chemistry, working in collaboration with the researchers at Johannes Gutenberg University Mainz has now observed conventional superconductivity at minus 70 degrees Celsius, in hydrogen sulfide (H2S).

To convert the substance, which is a gas under normal conditions, into a superconductor the scientists did however have to subject it to a pressure of 1.5 megabar (1.5 million bar), as they describe in the latest edition of the science magazine Nature.

The transition temperature of conventional superconductivity knows no limits

“With our experiments we have set a new record for the temperature at which a material becomes superconductive,” says Mikhael Eremets. His team have also been the first to prove in an experiment that there are conventional superconductors with a high transition temperature. Theoretical calculations had already predicted this for certain substances including H2S.

“There is a lot of potential in looking for other materials in which conventional superconductivity occurs at high temperatures,” says the physicist. “There is theoretically no limit for the transition temperature of conventional superconductors, and our experiments give reason to hope that superconductivity can even occur at room temperature.”

The researchers generated the extremely high pressure required to make H2S superconductive at comparatively moderate negative temperatures in a special pressure chamber smaller than one cubic centimeter in size. The two diamond tips on the side, which act as anvils, are able to constantly increase the pressure that the sample is subjected to. The cell is equipped with contacts to measure the electrical resistance of the sample. In another high-pressure cell, the researchers were able to investigate the magnetic properties of a material that also change at the transition temperature.

After the researchers had filled the pressure chamber with liquid hydrogen sulfide, they increased the pressure acting on the sample gradually up to roughly two megabar and changing the temperature for each pressure level. They took measurements of both resistance and magnetization to determine the material’s transition temperature. The magnetization measurements provide very useful information, because a superconductor possesses ideal magnetic properties.

Hydrogen atoms facilitate superconductivity at high temperatures

The researchers believe that it is mainly hydrogen atoms that are responsible for hydrogen sulfide losing its electrical resistance under high pressure at relatively high temperatures: Hydrogen atoms oscillate in the lattice with the highest frequency of all elements, because hydrogen is the lightest.

As the oscillations of the lattice determine the conventional superconductivity—and do this more effectively the faster the atoms oscillate—materials with high hydrogen content exhibit a relatively high transition temperature. In addition, strong bonds between the atoms increase the temperature at which a material becomes superconductive. These conditions are met in H3S, and it is precisely this compound that develops from H2S at high pressure.

Mikhael Eremets and his team are now looking for materials with even higher transition temperatures. Increasing the pressure acting on the hydrogen sulfide above 1.5 megabar is not helpful in this case. This has not only been calculated by theoretical physicists, but now also confirmed in experiments performed by the team in Mainz. At even higher temperatures the electron structure changes in such a way that the transition temperature slowly begins to drop again.

Wanted: hydrogen-rich materials with a higher transition temperature

“An obvious candidate for a high transition temperature is pure hydrogen,” says Mikhael Eremets. “It is expected that it would become superconductive at room temperature under high pressure.” His team has already begun experimenting with pure hydrogen, but the experiments are very difficult as pressures of three to four megabar are required.

“Our research into hydrogen sulfide has however shown that many hydrogen-rich materials can have a high transition temperature,” says Eremets. It may even be possible to realize a high-temperature superconductor worth the name in terms of common temperature perception without high pressure. The researchers in Mainz currently need the high pressure to convert materials that act electrically insulating like hydrogen sulfide into metals.

“There may be polymers or other hydrogen-rich compounds that can be converted to metals in some other way and become superconductive at room temperature,” says the physicist. If such materials can be found, we would finally have them: superconductors that can be used for a wide range of technical applications. SB/PH

Original publication:
Conventional superconductivity at 203 K at high pressures
Alexander Drozdov, Mikhail Eremets, Ivan Troyan, Vadim Ksenofontov, Sergii Shylin Nature, 17. August 2015

Weitere Informationen:

http://www.mpic.de/en/news/press-information/news/supraleitung-widerstandslos-be...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>