Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar for synthetic cells

04.03.2015

Biologists from University of Freiburg involved in collaborative project SynGlycTis which receives 1.9 million euros in funding

After its success in the first joint call by ERASynBio, the collaborative project Synthetic Glycobiology - new strategies to build and functionalise proto-cells and proto-tissues is now set to receive roughly 1.9 million euros in total funding. SynGlycTis is a collaboration of scientists from Denmark, Germany, the UK, France, and Austria.


Lectins (rot) crosslink functionalised giant vesicles (green) to proto-tissues.

Its members include Junior Professor Dr. Winfried Römer from the University of Freiburg and his team of researchers. The University of Freiburg team will now receive roughly 400,000 euros of the project’s overall funding from the German Federal Ministry of Education and Research for a period of 36 months. The scientists in the SynGlycTis project plan to produce so-called proto-cells to study their behaviour.

Proto-cells are artificial systems of vesicle-shaped membranes. They can be produced with the help of giant vesicles, which are also synthetic and imitate the membranes of natural cells. The researchers plan to use these synthetic proto-cells to gain a better understanding of processes in natural systems by replicating these. Proto-cells could also be used in the future as systems to transport active agents, for example. This means, medications could be administered more directly where needed and released over longer periods of time in a controlled way.

Proto-cells are much less complex than natural cells. One important element in natural cells that scientists have not yet been able to integrate in their synthetic counterparts is the so-called glycocalyx, which consists mainly of polysaccharides. It protects the cell membrane and also plays an important role in the interaction between cells, among other things. Lectins, which are proteins that can bind sugar, are also important for cellular interaction.

Some pathogens, like viruses and bacteria, use sugar-protein interaction to enter human cells. Sugar-protein interaction can also cause the formation of proto-organelles and proto-tissues. That is why Römer’s team is investigating not only the integration of components in giant vesicles, but also interaction within the proto-cell with the help of fluorescence and atomic force microscopes. The team’s goal is to build proto-organelles and proto-tissues.

The ERASynBio project provides funding for synthetic biology by structuring and coordinating research and necessary investments in several countries. Its goal is to establish a European research community in this field. ERASynBio is part of the seventh Framework Programme for research and technological development in the European Union.

Römer is a junior professor of synthetic biology of signalling processes at the cluster of excellence BIOSS Centre for Biological Signalling Studies and the Institute of Biology II of the University of Freiburg. He is also member of the Spemann Graduate School of Biology and Medicine, the International Research Training Group Soft Matter Science and the Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB) at the Max Planck Institute of Immunobiology and Epigenetics (MPI-IE) in Freiburg.

More information about ERASynBio:
www.erasynbio.eu

Contact:

Junior Professor Dr. Winfried Römer
BIOSS Centre for Biological Signalling Studies
University of Freiburg
Germany
Phone: +49 761 - 203 - 67500
Email: winfried.roemer@bioss.uni-freiburg.de

Rudolf-Werner Dreier | University of Freiburg
Further information:
http://www.uni-freiburg.de/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>