Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subcutaneous Administration of Multispecific Antibody Makes Tumor Treatment Faster & More Tolerable

01.07.2015

Tumor treatment with multispecific* antibodies is significantly more tolerable if administered subcutaneously rather than via the bloodstream, which was the standard procedure until now. This was the result of an animal model study undertaken by researchers at Helmholtz Zentrum München in cooperation with the Munich biotech company Trion Research. According to the scientists, the findings published in the journal Molecular Cancer Therapeutics could lead to shorter hospital stays, among other benefits for patients.

As a rule, anti-tumor antibodies are administered to the patients intravenously. This usually takes several hours because otherwise a too rapid activation of the immune system can lead to significant adverse side effects.


Trifunctional antibody

Source: Trion Research GmbH

The research group led by Prof. Dr. Ralph Mocikat of the Institute of Molecular Immunology (IMI), Helmholtz Zentrum München, therefore tested the subcutaneous delivery of the antibodies. For this purpose, the scientists used a special class of multispecific, so-called trifunctional*, antibodies. Specifically, they tested an antibody that was developed by Trion Research GmbH to combat melanoma cells.

Evenly released into the body

“Overall, our results from the mouse model show that the subcutaneous administration of trifunctional antibodies has significant advantages in comparison to the standard intravenous therapy,” said lead author Nina Deppisch. “Although the bioavailability is lower – that is, the quantity of active agents in the bloodstream is less – the antibodies are better tolerated, with undiminished effectiveness against the tumor.”

The researchers hypothesize that this good tolerability is due to the subcutaneous method of administering the antibodies because these are slowly and evenly released into the body from under the skin, like from a depot. “Inflammation markers such as the levels of certain cytokines confirm this,” Deppisch said.

Treatment in the future: subcutaneous rather than intravenous?

The researchers view two aspects as particularly promising: “First, the study once again demonstrates the effectiveness of trifunctional antibodies,” said Mocikat. “Their advantage is that they generally bring about long-lasting immunity against the tumor instead of fighting it only for a brief period. Second, our results show that tumor treatment can be put on a broader basis with regards to its availability for patients. Perhaps, due to this better tolerability, a hospitalization of the patient will no longer be necessary, since the subcutaneous administration can take place in a matter of minutes instead of hours.“ The researchers want to explore this issue in further studies.

Further Information

Background
*Multispecific antibodies: Typically, antibodies have two kinds of binding sites: The two identical antigen binding domains in the variable regions of the branches of the Y structure and another binding site for cells of the innate immune response in the area of the antibody stem (Fc region). The trick with multispecific antibodies is that these simultaneously combine multiple different cell types. One example for multispecific antibodies are the trifunctional antibodies mentioned in this text (see also below).

*Trifunctional antibodies form a subclass of multispecific antibodies. The two binding sites in the variable regions are different here: One binds to a surface antigen on cancer cells, the second on the body’s own T cells and the constant part to scavenger cells of the innate immune system (macrophages, monocytes, and dendritic cells). The destruction of the cancer cells is then carried out by two different mechanisms: The T cells initiate the lysis of the tumor cells (apoptosis), and the cells of the innate immune system destroy the cancer cells by phagocytosis and necrosis. The resulting cellular debris is presented to the immune system, thus resulting in long-term immunity.

Original Publication:
Deppisch, N. et al. (2015). Efficacy and Tolerability of a GD2-Directed Trifunctional Bispecific Antibody in a Preclinical Model: Subcutaneous administration is superior to intravenous delivery, Molecular Cancer Therapeutics, DOI: pii: molcanther.0156.2015

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The Institute of Molecular Immunology (IMI) performs application-oriented basic research at the interface of immunology, oncology and molecular biology. The objectives of the Institute are to elucidate the basic mechanisms of the immune system, to understand the pathogenesis of immunologically mediated diseases and to directly transfer insights gained in basic research into clinical applications. The Institute focuses on developing new personalized treatment strategies for the targeted modulation of the immune system.

The independent Trion Research GmbH was founded in 1998 by Horst Lindhofer as a Spin-off company of the Helmholtz Zentrum München. TRION Research is an independent research organization offering specialized preclinical and clinical services to the biopharmaceutical industry, from initial drug design through to clinical studies.

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49-(0)89-3187-2238 - Fax: +49 89 3187 3324 – E-mail: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Prof. Dr. med. Ralph Mocikat, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Molecular Immunology, Marchioninistr. 25, 81377 München - Phone: +49 89 3187 1302 – E-mail: Mocikat@helmholtz-muenchen.de

Contact at Trion Research GmbH
Dr. Horst Lindhofer, Trion Research (GmbH), Am Klopferspitz 19, 82152 Martinsried – Phone: +49 89 70076624 – E-mail: horst.lindhofer@trionresearch.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/en/news/press-releases/2015/index.html - Press Releases of Helmholtz Zentrum München
http://www.helmholtz-muenchen.de/en/imi/index.html - Institute of Molecular Immunology
http://www.trionresearch.com - Trion Research

Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>