Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows role of disease-fighting cells in HIV-related neurological damage

12.05.2015

Findings add to evidence macrophage accumulation is central to brain injury

Despite symptom-stifling anti-retroviral drugs, as many as half of all patients living with HIV experience neurological damage tied to chronic inflammation in the brain fueled by the body's own immune defenses.


Dyes illuminate macrophage and monocyte cells as they arrive in the brain, where their presence is tied to neurological damage in people otherwise living symptom-free with HIV. By using different colored dyes to tag these disease-fighting cells, researchers have developed a clearer picture of how and when macrophages and monocytes accumulate in different parts of the brain during stages of HIV infection and the onset of AIDS. The findings, reported in the American Journal of Pathology, add new evidence about the role of these cells in AIDS-related dementia and other illnesses.

Credit: Amer. Journal of Pathology

In an effort to understand why patients who appear virus free are afflicted with AIDS-related dementia and other illnesses, researchers have focused on disease-fighting cells, called macrophages and monocytes, as they traffic throughout the body and into the brain.

But little has been known about the timing and dynamics behind these types of white blood cells as they invade the central nervous system during the initial stages of HIV infection or at the onset of AIDS.

A new investigative approach in SIV-infected rhesus monkeys has yielded fresh clues that show the caustic interplay between macrophage and monocyte traffic in the central nervous system and the onset of HIV infection and the formation of brain lesions tied to neurological damage, according to a new report in the online edition of the American Journal of Pathology.

Researchers from Boston College, the University of Florida and Tulane University Health Science Center report macrophages accumulate in different parts of the brain during different stages of initial infection, a finding that clarifies the spread of infection to the brain is a multi-layered and dynamic process.

"This type of approach allowed us to label macrophages in the perivascular space in the brain to identify macrophage and monocyte traffic to the brain in the early, mid and late stages of infection," said Boston College Professor of Biology Kenneth Williams, the senior author of the report. "We now know what cells bring the virus to the brain and what cells contribute to neurological damage in the brain, as well as the timing of the entry of these cells and when the pathologic virus enters. These are two big questions researchers have had."

The researchers tagged monocytes, destined to enter the brain, in bone marrow with a biochemical marker known as BrdU and also used a series of different color dyes to label macrophages as they entered the central nervous system at different times in infection, including early, mid and terminal states. As infection progressed, the researchers found MAC387 macrophages accumulated in the meninges and choroid plexus in early-stage brain infection. Later on, MAC387 macrophages were found in perivascular spaces that surround arteries and veins in the brain, as well as at sites where brain lesions would form.

Another macrophage, known as CD163 macrophages, was traced to perivascular space and brain lesions during the late stage, the team reports. Late in infection, the volume of macrophages entering the brain was nearly three times as great as during early-stage infection.

"An important question researchers have is what drives the pathology and the resulting damage in the brain?" said Williams. "Is it the virus itself or macrophage and monocyte cells? What we found is that these cells that arrive late with the development of AIDS have a 2.9-fold higher percentage of being infected with the virus. So there is a dramatic increase in the viral load as infection progresses that correlates to macrophage accumulation."

Turning their attention to lesion formation, the researchers discovered that greater than 80 percent of the macrophages found in the lesions were present in the brain prior to lesion formation. The surprising finding suggests the cells in the lesions migrated from non-lesion sites in the brain rather than from outside the brain.

"Brain lesions are central to understanding what causes AIDS-related dementia," said Williams. "In early stages of infection, we could see two or three macrophages scattered along the vessel. By the late stage, when lesions appeared, there were 30 to 50 at the site. What we found is that a majority of the cells in the lesions were present in the brain at an early stage. So these macrophages are migrating from the brain to the lesion sites, which shows a complex and dynamic level of activity."

Media Contact

Ed Hayward
ed.hayward@bc.edu
617-552-4826

 @BostonCollege

http://www.bc.edu 

Ed Hayward | EurekAlert!

Further reports about: HIV brain lesions central nervous system damage macrophage macrophages nervous neurological

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>