Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study sheds light on chemicals that insects use to communicate and survive


Method devised by UC Riverside scientists isolates new chemicals that could be exploited to control pest species

Most insects are covered with a thin layer of hydrocarbon molecules as a waterproofing barrier. Embedded in this layer are compounds that the insects use as chemical signals for a wide variety of functions such as communicating species and sex. In insects such as ants that live in colonies, they also differentiate the different castes (e.g., workers, queens, and drones).

Most insects, such as the Argentine ant seen here, are covered with a thin layer of hydrocarbon molecules as a waterproofing barrier.


Mike Lewis, CISR, UC Riverside

But isolating these chemicals and determining their absolute configuration and functions has been a challenge because the chemicals occur in complex mixtures which are hard to separate.

Now a team of entomologists and chemists at the University of California, Riverside has devised a straightforward method for purifying these compounds that could result in new "green" methods of controlling pest species, like ants, by disrupting the organization of their colonies.

The researchers devised a technique that combined known fractionation methods with reverse phase high performance liquid chromatography - powerful tools in analysis. Specifically, they used their method to isolate 36 pure hydrocarbon molecules from the complex blends of 20 randomly chosen species in nine insect orders, so that these compounds could be conclusively identified, and the effects of the individual chemicals could be tested.

"In so-called social insects that live in large colonies, such as ants and bees, these chemicals have additional functions," explained Jocelyn G. Millar, a professor of entomology and chemistry, whose lab led the research team. "The queen in these colonies, for example, uses the chemicals to prevent her workers from laying eggs of their own, ensuring that she remains the only reproducing female in the colony."

The efforts of his research team were complicated by the fact that these chemicals can occur in right-handed (R) or left-handed (known as S, from sinistro, the Latin word for left) forms. Moreover, Millar and his colleagues did not know whether some insects produce the R form and others produce the S, or whether they all produced one form.

"This is critical information for biological activity, because if you have the wrong form, it is like trying to put your right hand into a left-hand glove," Millar said. "The wrong form of the chemical will simply not fit into its biological receptor."

His team was able to solve this problem by showing that all 20 insects that were tested had, regardless of species, sex and life stage, the R form of these chemicals.

"This suggests strongly that nearly all insects are likely to produce the R form of these chemicals," Millar said. "Knowing this will be of great help in unravelling what these signals do and how they work."


Study results appear online this week in the Proceedings of the National Academy of Sciences.

Millar was joined in the research by Ph.D. chemistry student Jan E. Bello and entomologist J. Steven McElfresh. The study was partly funded by a grant to Millar from the Hatch Project of the National Institute of Food and Agriculture, U.S. Department of Agriculture.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Media Contact

Iqbal Pittalwala


Iqbal Pittalwala | EurekAlert!

Further reports about: UCR ants chemicals colonies hydrocarbon hydrocarbon molecules insects species

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>