Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study heralds new chapter in infectious disease research


A new approach pioneered by researchers at the University of Würzburg may prove to be a big step forward in the study of the molecular basis of infectious diseases. For the first time, the scientists have shown in detail which genes are activated or repressed in both the pathogen and in the host cell during an infection. The results are published in the journal Nature.

The study led by Professor Jörg Vogel from the Würzburg Institute of Molecular Infection Biology also involved researchers from Leipzig and Cologne. The scientists investigated the initial events that occur during the first few hours following a Salmonella infection. These bacteria are a leading cause of food-borne illnesses and when ingested with contaminated food, they multiply in the intestine causing the symptoms associated with severe food poisoning.

A new method developed at the University of Würzburg allows researchers to shed light on the details of what happens in pathogens and affected host cells during an infection. The image shows human cells (red/blue) infected with Salmonella (green). The bacteria were marked with a fluorescent dye. (Photo: IMIB)

There remains much to be learnt about how the pathogens affect the host cell and also how the infected cell responds to the presence of the bacteria. Researchers have now devised a new approach, called dual RNA sequencing, to study both these aspects. This method enables them to look at an important group of specific molecules, RNAs, in human cells infected with the pathogen Salmonella Typhimurium.

RNA is present in all living cells and serves many different functions. For instance, traditionally, RNA has been viewed as a messenger that transmits the genetic information from genes into proteins, however, recently many RNAs themselves have been shown to control important processes in the cell.

By isolating the entire RNA content from infected cells, i.e. the RNA from both bacteria and host, this allowed the scientists to describe in detail which of its approximately 5,000 genes Salmonella activates or deactivates during the different stages of infection. At the same time, they analysed how the more than 40,000 genes of the host cells respond to the pathogen.

Small molecule, huge impact

Their analysis revealed that Salmonella boosts the production of a bacterial RNA molecule named PinT by more than a hundred fold during an infection. PinT does not encode for a protein, but belongs to a special group of bacterial RNAs called small RNAs (sRNAs).

These sRNAs are relatively small RNA molecules that are responsible for fine-tuning gene activity: For example, they make sure that proteins are produced at the correct time by controlling the availability of messenger RNAs. There are many of these sRNAs in a bacterial cell but in the majority of cases their roles during an infection are largely unknown. "To understand what PinT does we generated a Salmonella mutant that is incapable of producing it," Dr. Alexander Westermann from the Würzburg Institute for Molecular Infection Biology explains. "Then we looked at how this mutant behaves during an infection."

The result was astonishing: The miniature molecule clearly affects a whole range of bacterial genes, in particular the virulence factors. The latter are decisive for how aggressively the bacterium behaves during an infection. There are virulence genes, for example, that the pathogen needs to invade the host cell. Because the process requires a lot of energy, bacteria only produce virulence factors when they are actually required. This precise timing control also minimises the risk that the bacteria are prematurely detected by the immune system.

The baton for correct timing

PinT acts as the baton which ensures the correct timing. Without the tiny molecule, the finely orchestrated tuning of virulence factors becomes disrupted. This shift in turn has a huge impact on the host cell. "In our study, nearly one tenth of all host genes were affected, which were now transcribed either more or less frequently compared to a normal infection," Westermann explains. "The activation of certain immune genes, for instance, was much stronger than usual."

For the first time, the simultaneous sequencing of pathogen and host RNA has allowed scientists to follow the complex chain of molecular events that occur during the course of an infection. "With comparably little effort, the method promises a wealth of new insights," Professor Jörg Vogel explains. "For many bacterial genes, it has been virtually impossible so far to clarify their contribution to infection – we simply didn't have the proper methods. Now, there finally is a sensitive tool to study these genes. Dual RNA sequencing opens up a new dimension to infection research." However, the method generates large amounts of data. Experts in computation biology at the Universities of Würzburg and Leipzig have developed new algorithms specifically for the study that allow the automatic processing of the RNA sequences at a sufficient speed.

Alexander J. Westermann, Konrad U. Förstner, Fabian Amman, Lars Barquist, Yanjie Chao, Leon N. Schulte, Lydia Müller, Richard Reinhardt, Peter F. Stadler & Jörg Vogel: Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions; Nature (DOI: 10.1038/nature16547)


Prof. Dr. Jörg Vogel, Institute for Molecular Infection Biology of the University of Würzburg
Phone: +49 931 31-82575, E-mail:

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>