Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds variation within species is a critical aspect of biodiversity


Researchers compared the ecological consequences of variation within species and among species, and found similar effects in many cases

Concerns about biodiversity tend to focus on the loss of species from ecosystems, but a new study suggests that the loss of variation within species can also have important ecological consequences.

Varieties of evening primrose (Oenothera biennis) show variation in leaf chemistry, leading to differences in the insect communities in different fields.

Credit: Nash Turley

Usage Restrictions: For use only with news coverage of this research.

Many species play important roles in nature and provide services important to people. For example, many fish species are harvested for food, and many insect species pollinate wild and cultivated plants. The loss of these species may mean the loss of ecosystem services, a major motivation for preventing species extinctions. The new study, published December 4 in Nature Ecology & Evolution, found that the ecological effects of within-species variation may be far reaching and often rival those of species themselves.

"It's not just the loss of whole species that we should be concerned about. We also need to pay more attention to the ecological consequences of variation within species," said lead author Simone Des Roches, a postdoctoral researcher at UC Santa Cruz.

Variation within species affects how organisms interact with each other and their surrounding environment. For example, the size of a fish's mouth, known as its gape, determines the size of prey it can eat. And the variety of noxious chemicals a plant produces controls which insects chew its leaves. Much of the time, traits like fish gape and leaf chemistry are adaptive. They help organisms live in a changing world. However, much less is known about how variation within species affects broader ecosystems.

Variation within species can influence ecosystems through both direct and indirect ecological effects. Direct ecological effects can occur when trait differences affect the abundance or types of prey or resources an organism consumes, such as when the gape size of fish influences the kinds of plankton prey that survive in lakes or when leaf chemistry determines the grazing insects that inhabit a field. However, those prey or grazers often have diverse other interactions and roles in ecosystems that can be further altered. Ecological effects caused by such chains of interactions are known as "indirect effects."

The study by Des Roches and her collaborators examined all available studies that compared the ecological effects of variation within species to the effects of species presence (removing the species or replacing it with another). They included 25 studies measuring a total of 144 different ecological responses from various types of plants, animals, and fungi. Their results show that variation within species, such as the effects of large- and small-gaped fish populations on zooplankton, are often similar to--and can sometimes be stronger than--species effects.

On average, species tend to have larger effects on ecosystems. Yet over a third of studies examined showed that swapping different variants of the same species had similar ecological effects as removing that species entirely or replacing it with a completely different species.

"Traditionally, ecologists have focused on the ecological importance of biodiversity among species. This paper broadly establishes within-species biodiversity as critical for ecology," said coauthor Eric Palkovacs, associate professor of ecology and evolutionary biology at UC Santa Cruz.

Nearly half of all the studies documented at least one ecological response that was more strongly affected by variation within species than by its presence. In a surprising result, within-species variation was shown to have the largest impacts on organisms that the focal species wasn't directly consuming or evading. In other words, trait variation within species appears most important for indirect effects.

The study suggests that protecting trait variation within species is not only important for the future of evolution, but also potentially critical for the functioning of current and future ecosystems, according to Palkovacs. "This is a sobering thought given that human activity is causing within-species variation to be lost at a far greater rate than the extinction of entire species," he said.


In addition to Des Roches and Palkovacs, the coauthors of the paper include David Post at Yale University; Nash Turley at the University of Central Florida; Joseph Bailey and Jennifer Schweitzer at the University of Tennessee; Andrew Hendry at McGill University; and Michael Kinnison at the University of Maine. This work was funded by the Quebec Centre for Biodiversity, the UC Institute for the Study of Ecological and Evolutionary Climate Impacts, the David and Lucile Packard Foundation, and the National Science Foundation.

Media Contact

Tim Stephens


Tim Stephens | EurekAlert!

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>