Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds there is less knowledge about global species diversity than previously assumed


Many of the previous studies on global species diversity are inaccurate. These are the conclusions of an international research group, led by Martin Luther University Halle-Wittenberg (MLU) in collaboration with the German Centre for Integrative Biodiversity Research Halle - Jena - Leipzig (iDiv), which carried out a long-term study on biodiversity in the subtropical forests of China. The study shows that there might be an under- or overestimation of global biodiversity by up to 50 per cent when the survey is based on only a few taxa. The study’s findings were published in the journal “Nature Communications”.

The international research group “BEF-China” received funding from the German Research Foundation (DFG) for a period of eight years. Its aim was to determine the diversity of the species present in an ecosystem.

“This presents a massive challenge, particularly for tropical and subtropical forest ecosystems that have a rich variety of species,” says Professor Helge Bruelheide from the Institute of Biology at MLU who led the research group. Even though the global diversity of plant species is well known, there are only a few studies that have attempted to record the variety of animal species – from the bugs found under bark to web-building spiders – as well as the plant species found in these forests.

The tiny living creatures – such as the fungi and bacteria in the soil that are useful and harmful to plants – have often been disregarded. “All of these species are what makes up global biodiversity,” Bruelheide explains. This is why many of the studies investigating the scale of this biodiversity have only been speculation.

The international research team now has sound estimates in China about the number of species belonging to 43 different major taxa. These estimates are based on individual test plots as well as on an entire nature reserve. “A key feature of our project region is that it reflects the current situation of the earth’s forests better than the tropical lowland rainforests which have been the main focus of many studies up until now,” says Dr Andreas Schuldt from Leuphana University Lüneburg, the lead author of the study.

“Forty-seven per cent of the humid tropical and subtropical forests occur in mountainous regions, a situation that is very similar to our project region. We can now assume that, in regions with different altitudes, slopes and solar orientation, species numbers increase at a different rate according to area than in lowland rain forests.” The majority of rainforest research has focused on the more accessible lowland rainforests. This new study underscores the necessity of carrying out more intensive investigations in the mountainous rainforests, says Schuldt.

Another new feature of this study is the way it combines traditional ways of determining species with modern methods of DNA analysis. This allows scientists to determine the number of bacteria and fungi taxa found in soil. This important contribution was made by Dr Tesfaye Wubet and Professor François Buscot from the Helmholtz Centre for Environmental Research (UFZ) in Halle. The team took a complete inventory of 27 sample plots in the Gutianshan National Nature Reserve in Zhejiang province west of Shanghai. The scientists were able to record in excess of 77,000 individuals from more than 1,000 plant and animal species, and 6,000 microorganism taxa.

Geobotanist Helge Bruelheide adds: “This work is an example of why long-term research is so essential. Studies such as this cannot be achieved within the usual funding period of three years. They require years of repeated investigations on numerous sample plots.”

The numbers show that, according to the researchers’ projections, one ha of subtropical forest can capture around 38 per cent of all species while 10 ha can capture 76 per cent of the species. “This reveals the limited informational value of sample plots with very selective distribution globally,” says Bruelheide. The larger the area and the number of woody plants, i.e. trees and shrubs, the less precisely one can predict the overall diversity of other taxa.

Methods of spatial statistics were integrated into the study to lay the foundations for more precise future predictions about the number of species found in large areas, such as entire continents, based on environmental conditions.

MLU, iDiv Research Centre and UFZ were joined in the study by the universities of Lüneburg, Freiburg, Kiel und Leipzig in Germany, and the institutes of the Chinese Academy of Sciences in Beijing.

Original Publication:

Schuldt, A., Wubet, T., Buscot, F., Staab, M., Assmann, T., Böhnke-Kammerlander, M., Both, S., Erfmeier, A., Klein, A.M., Ma, K.P., Pietsch, K., Schulze, S., Wirth, C., Zhang, J.Y., Zumstein, P. & Bruelheide, H. (2015): Multitrophic diversity in a biodiverse forest is highly nonlinear across spatial scales. - Nature Communications 6: 10169. DOI: 10.1038/ncomms10169.

The study was funded by the German Research Foundation (DFG FOR 582 891/1, 891/2), the Sino-German Centre for Research Promotion (GZ 524, 592, 698, 699, 785, 583 and 1020) and the National Science Foundation of China (NSFC 30710103907 and 584 30930005).

Professor Helge Bruelheide (available from 14 December 2015)
Institute of Biology, Martin Luther University Halle-Wittenberg & Co-Director iDiv
Phone: +49-345–55-26222

Professor François Buscot
Helmholtz-Centre for Environmental Research (UFZ), University of Leipzig & Co-Director iDiv
Phone: +49-345-558-5221

PD Dr Andreas Schuldt
Institute of Ecology, Leuphana University of Lüneburg
Phone: +49-4131-677-2965

Weitere Informationen:

Manuela Bank-Zillmann | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>