Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: changing climate prompts boreal forest shift

12.06.2015

With warming summer temperatures across Alaska, white spruce tree growth in Interior Alaska has declined to record low levels, while the same species in Western Alaska is growing better than ever measured before.

The findings are the result of a study led by University of Alaska Fairbanks School of Natural Resources and Extension researcher Glenn Juday, Claire Alix of the University of Paris 1 Pantheon-Sorbonne, and Tom Grant, formerly an adjunct faculty member at UAF. Their findings were recently published online by the journal Forest Ecology and Management.


Floodplain white spruce stand along lower Yukon River, late at night near the summer solstice in 2007.

Courtesy of Photo by Claire Alix

'For the first time across a major forest region, we have real data showing that biome shift has started,' Juday said. 'This is not a scenario model, or a might, or a maybe. The boreal forest in Interior Alaska is very near dying from unsuitably warm temperatures. The area in Western Alaska where the forest transitions to tundra is now the productive heart of the boreal forest.'

The paper is the result of 10 years of research. Juday and Alix gathered white spruce tree cores and disks from 540 trees in 36 stands along the Yukon, Tanana and Kuskokwim rivers. They started in easternmost Alaska and sampled downriver to the western edge of the boreal forest near the Bering Sea. The research required the team to travel hundreds of miles down some of the most pristine large rivers left on Earth. Sam Demientieff, a longtime Interior river traveler and Alaska Native leader, provided much of the river transportation and expertise required to navigate the silt-filled water and constantly shifting channels.

The researchers took two measurements from each annual growth ring of the 100 to 250-year-old trees, then analyzed the nearly quarter-million measurements to determine how much the trees grew each year. They then compared that growth to temperature data from eastern, Interior and Western Alaska historical records and weather stations. In addition, they drew on previous scientists' work chronicling tree growth and temperature back more than two centuries.

They found that in Interior Alaska, as summer temperatures rose, the growth of the trees slowed. Meanwhile, in Western Alaska, which is also warming, the trees are growing more rapidly.

White spruce trees thrive within an optimal temperature range. The long-term average temperature in Interior Alaska used to be at the high end of that optimum. In Western Alaska, the average temperature was below or at the low end of the optimal temperature range.

In the mid-1970s, temperatures suddenly increased and have cycled around a higher average since. Interior Alaska's average temperature became warmer than the trees' ideal range, and growth slowed. Meanwhile, the average temperature in Western Alaska increased to more closely match optimal conditions, which increased growth.

'One aspect of the study that makes the results especially clear is that the trees were all growing in the same environment along the big rivers,' Juday said. 'In many transect studies, lots of variables change across the area studied. In ours, the main thing that changed was the climate, from the hot, dry summers of the Interior, to the cooler, wetter climate near the coast.'

Juday notes that their findings don't mean the boreal forest is going away. It's simply shifting away from lowlands in Interior Alaska to higher elevations and the western part of the state, he said. 'The movement of an entire biome is often hypothesized in models of probable future climate, but the Alaska boreal forest is actually shifting today, and the process is well underway.'

###

Contacts:

Glenn Juday
907-474-6717
gpjuday@alaska.edu

Claire Alix
Claire.Alix@univ-paris1.fr
33-1-46-69-26-51

Note to editors: downloadable photos are available online at http://news.uaf.edu/borealforest2015.

Media Contact

Marmian Grimes
mlgrimes@alaska.edu
907-474-7902

 @uafairbanks

http://www.uaf.edu 

Marmian Grimes | EurekAlert!

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>