Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stroke: New approach to treatment


The inhibition of an inflammatory protein drastically reduces consequential damage following a stroke. This has now been demonstrated by scientists from the University of Würzburg. Their discovery could significantly improve the treatment provided to stroke patients.

Blood vessels that supply the brain with vital oxygen are suddenly blocked by blood clots; this causes nerve cells to die, and the sufferer develops symptoms that include paralysis and speech disorders: this is the typical scenario for a stroke.

At this point, rapid action is needed: The sooner the blood clots are dissolved with medication, the less severe the consequential damage is for the sufferer as a rule. Yet, often patients reach a life-saving hospital too late. This delay is also one reason why the risk of dying from a stroke in Germany is around ten times higher than the danger of being injured in a traffic accident.

Excess pressure inside the skull

However, this lack of oxygen inside the brain is only one issue among many that can occur with a stroke. One dreaded side effect, for example, are inflammatory processes in the brain and water retention in the nervous tissue, which is known as cerebral edema formation. Since the brain is surrounded by a rigid cranial bone, excess pressure builds up inside the skull, initially affecting healthy brain tissue at the same time.

“There are many facets to a stroke. It is this that makes it so difficult to treat; after all, most drugs can only target one key area,” says Professor Christoph Kleinschnitz, head of the Stroke Unit at the University of Würzburg’s Department of Neurology.

Publication in the “Annals of Neurology”

This shortage of effective medications might very soon be a thing of the past, hopes the neurologist. Kleinschnitz and his team have succeeded in inhibiting a specific inflammatory protein and, in so doing, noticeably reducing the consequences of a stroke.

They were supported in this by the Würzburg biomedical scientist Professor Bernhard Nieswandt and neurologists from the University of Münster. The researchers present the results of their work in the online issue of the “Annals of Neurology”, the official journal of the American Neurological Association.

“It has been known for quite some time that the inflammatory protein plasma kallikrein damages the nervous tissue in several ways after a stroke,” explains Kleinschnitz. For instance, this protein contributes to the creation of further blood clots in the brain. It also intensifies the inflammation as well as cerebral edema.

So, as a first step, the scientists worked with mice that lacked the gene for plasma kallikrein. These animals developed dramatically smaller strokes and revealed fewer neurological deficiencies. “This observation was very promising but it initially had no relevance to usage on patients. We therefore had to find a way of inhibiting plasma kallikrein pharmacologically as well,” explains Dr. Eva Göb, a research associate on Kleinschnitz’s team.

Antibody is effective even hours later

For this reason, the Würzburg researchers used an antibody that annuls the effect of plasma kallikrein in the blood of the mice. As they were able to show, this method also mitigated the consequences of a stroke dramatically. “What is interesting here is that the antibody itself was still effective when it was injected into the animals with a delay of three hours after the onset of the stroke. This means that the antibody could possibly be used on stroke patients who are late arriving at a hospital,” says Kleinschnitz. However, further studies and a safety test need to be conducted first before that point is reached.

The work in Würzburg Collaborative Research Center (SFB) 688 was funded by the German Research Foundation (DFG).

“Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation” Eva Göb, Stephan Reymann, Friederike Langhauser, Michael K. Schuhmann, Peter Kraft, Ina Thielmann, Kerstin Göbel, Marc Brede, György Homola, László Solymosi, Guido Stoll, Christian Geis, Sven G. Meuth, Bernhard Nieswandt, Christoph Kleinschnitz. Annals of Neurology. Published online on January 27, 2015. doi: 10.1002/ana.24380.


Prof. Dr. Christoph Kleinschnitz, Department of Neurology at the University of Würzburg, T +49 (0)931 201-23756,

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>