Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroke: New approach to treatment

06.02.2015

The inhibition of an inflammatory protein drastically reduces consequential damage following a stroke. This has now been demonstrated by scientists from the University of Würzburg. Their discovery could significantly improve the treatment provided to stroke patients.

Blood vessels that supply the brain with vital oxygen are suddenly blocked by blood clots; this causes nerve cells to die, and the sufferer develops symptoms that include paralysis and speech disorders: this is the typical scenario for a stroke.

At this point, rapid action is needed: The sooner the blood clots are dissolved with medication, the less severe the consequential damage is for the sufferer as a rule. Yet, often patients reach a life-saving hospital too late. This delay is also one reason why the risk of dying from a stroke in Germany is around ten times higher than the danger of being injured in a traffic accident.

Excess pressure inside the skull

However, this lack of oxygen inside the brain is only one issue among many that can occur with a stroke. One dreaded side effect, for example, are inflammatory processes in the brain and water retention in the nervous tissue, which is known as cerebral edema formation. Since the brain is surrounded by a rigid cranial bone, excess pressure builds up inside the skull, initially affecting healthy brain tissue at the same time.

“There are many facets to a stroke. It is this that makes it so difficult to treat; after all, most drugs can only target one key area,” says Professor Christoph Kleinschnitz, head of the Stroke Unit at the University of Würzburg’s Department of Neurology.

Publication in the “Annals of Neurology”

This shortage of effective medications might very soon be a thing of the past, hopes the neurologist. Kleinschnitz and his team have succeeded in inhibiting a specific inflammatory protein and, in so doing, noticeably reducing the consequences of a stroke.

They were supported in this by the Würzburg biomedical scientist Professor Bernhard Nieswandt and neurologists from the University of Münster. The researchers present the results of their work in the online issue of the “Annals of Neurology”, the official journal of the American Neurological Association.

“It has been known for quite some time that the inflammatory protein plasma kallikrein damages the nervous tissue in several ways after a stroke,” explains Kleinschnitz. For instance, this protein contributes to the creation of further blood clots in the brain. It also intensifies the inflammation as well as cerebral edema.

So, as a first step, the scientists worked with mice that lacked the gene for plasma kallikrein. These animals developed dramatically smaller strokes and revealed fewer neurological deficiencies. “This observation was very promising but it initially had no relevance to usage on patients. We therefore had to find a way of inhibiting plasma kallikrein pharmacologically as well,” explains Dr. Eva Göb, a research associate on Kleinschnitz’s team.

Antibody is effective even hours later

For this reason, the Würzburg researchers used an antibody that annuls the effect of plasma kallikrein in the blood of the mice. As they were able to show, this method also mitigated the consequences of a stroke dramatically. “What is interesting here is that the antibody itself was still effective when it was injected into the animals with a delay of three hours after the onset of the stroke. This means that the antibody could possibly be used on stroke patients who are late arriving at a hospital,” says Kleinschnitz. However, further studies and a safety test need to be conducted first before that point is reached.

The work in Würzburg Collaborative Research Center (SFB) 688 was funded by the German Research Foundation (DFG).

“Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation” Eva Göb, Stephan Reymann, Friederike Langhauser, Michael K. Schuhmann, Peter Kraft, Ina Thielmann, Kerstin Göbel, Marc Brede, György Homola, László Solymosi, Guido Stoll, Christian Geis, Sven G. Meuth, Bernhard Nieswandt, Christoph Kleinschnitz. Annals of Neurology. Published online on January 27, 2015. doi: 10.1002/ana.24380.

Contact

Prof. Dr. Christoph Kleinschnitz, Department of Neurology at the University of Würzburg, T +49 (0)931 201-23756, christoph.kleinschnitz@uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>