Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress bypasses quality control

13.12.2016

Göttingen researchers find cellular mechanism to stop quality control of gene expression

Under stressful life conditions many proteins lose their functionality. A natural mechanism that can be found in all cells leads to the preferred synthesis of stabilizing proteins (so called chaperones), which protect cells from stress and the subsequent “destruction” of normal proteins. Scientists from the University of Göttingen have addressed the question of how this life-saving mechanism works. The results were published in Nature.


Scheme to the study. graphics: Professor Heike Krebber, University of Göttingen

The team of Professor Heike Krebber, head of the study and Director of the Department of Molecular Genetics, found out that the synthesis of regular proteins always involves quality control steps during the synthesis of the mRNA (messenger RNA) and prior to its nuclear export into the cytoplasm in which the mRNAs are translated into proteins by large protein factories, the ribosomes. These quality control mechanisms are prevented during stress. Thus, the cell rather accepts false mRNAs than undergoing cell death.

Under normal conditions, regular mRNAs are synthesised as precursor-mRNAs, which require several maturation steps. Every step is surveyed by a group of guarding adapter proteins (guardian proteins) that bind to the RNA and check them for correctness. The processing of the pre-mRNA to the mature mRNA also includes the excision of intron sequences, large regions that do not encode proteins and that would interrupt and disturb the mRNA translation into proteins.

... more about:
»RNA »cellular stress »cytoplasm »mRNAs »proteins

Mistakes during maturation are detected by the guard-proteins that recruit an RNA-degradation machinery (the TRAMP-complex and the nuclear exosome), which remove the false mRNAs from the cell. Instead, when processing occurs correctly, the guardian proteins recruit an mRNA export receptor (Mex67-Mtr2), which resembles a bus ticket for nuclear export and allows passage of the mature and controlled mRNA through the nuclear pore complex into the cytoplasm.

The correct mRNAs can now be reached by the translation machinery and translated into correct proteins. This mechanism is important to prevent the translation of e.g. intron containing mRNAs, which can be toxic to the cell and harmful for an organism, as this can lead to diseases like cancer or neurodegenerative diseases.

The Göttingen researchers discovered that during cellular stress, normal mRNAs are not transported into the cytoplasm and not translated anymore. This is accomplished by dissociation of the guardian proteins with the export receptor from the mRNAs in the nucleus. In response to stress, cells synthesise specific stress-responsive transcripts that encode for stabilizing chaperone proteins that help the cell to survive the devastating situation.

“The exciting thing is”, Professor Krebber says, “that these stress specific mRNAs are not quality controlled and they are sent to the cytoplasm without the usual control of the guard-proteins, which speeds up the synthesis of the proteins required under cellular stress and which simply enables survival under stress.”

This mechanism of the guardian protein independent mRNA export is triggered by the gene promoter, by which transcription is initiated. This becomes clear from experiments in which a normal gene can be converted into a gene that is expressed during stress by exchanging its promoter. This engineered RNA leaves the nucleus during stress without quality control. This mechanism allows cells to survive a stressful situation for a longer time, which is important for the basic understanding of the functioning of a cell and provides knowledge for therapies. In particular the lacking quality control in stressed cells is an interesting fact that needs further research.

Original publication: Gesa Zander, Alexandra Hackmann, Lysann Bender, Daniel Becker, Thomas Lingner, Gabriela Salinas und Heike Krebber (2016): mRNA quality control is bypassed for an immediate export of stress responsive transcripts. Nature. Doi: http://dx.doi.org/10.1038/nature20572

Note to editors:
You can download pictures of the topic in print quality in the Internet at the address http://www.uni-goettingen.de/en/3240.html?cid=5703.

Contact:
Professor Heike Krebber
Georg-August-Universität Göttingen
Institute of Microbiology and Genetics – Molecular Genetics
Grisebachstraße 8, 37077 Göttingen
e-mail: heike.krebber@biologie.uni-goettingen.de
website: http://www.uni-goettingen.de/en/192168.html

Weitere Informationen:

http://www.uni-goettingen.de/en/3240.html?cid=5703
http://dx.doi.org/10.1038/nature20572

Thomas Richter | idw - Informationsdienst Wissenschaft

Further reports about: RNA cellular stress cytoplasm mRNAs proteins

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>